首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用3种异形喷丝板在两部位实验机上对EDDP切片进行POY纺丝实验,通过对干燥、纺丝、卷绕等关键工艺的控制,优化异形截面EDDP纺丝工艺。  相似文献   

2.
利用中间相沥青熔融纺丝法,制得中空、条形、Y形等异形纤维,介绍了异形沥青纤维的纺丝特点。分析了影响纤维异形度的因素,纺丝温度降低时,熔体粘度大,流动阻力大,有利于提高纤维的异形度。研究发现,异形喷丝孔的截面积大,可以实现较大的拉伸倍数,同时其当量直径小,对熔体分子剪切作用大,纺出的异形纤维的取向度高于圆形纤维。  相似文献   

3.
采用三角形喷丝板,以二甲基亚砜为溶剂,进行聚丙烯腈(PAN)湿法纺丝。探讨凝固成形条件及后拉伸对三角形PAN纤维截面形状、声速和力学性能的影响。结果表明:随着凝固浴浓度的升高,PAN初生纤维的异形度降低,声速和力学性能均先升高后降低;随着凝固浴温度的升高,PAN初生纤维的异形度增大,声速和力学性能均降低;随着喷丝头拉伸比的增加,PAN初生纤维的异形度增加,声速和力学性能也都呈上升趋势,随着后拉伸的进行,三角形PAN纤维的异形度基本保持不变,其力学性能和声速均逐渐升高。  相似文献   

4.
异形纤维纺丝技术探讨   总被引:5,自引:0,他引:5  
杨健华  黎群 《聚酯工业》2000,13(2):11-15
论述了异形纤维的纺丝技术 ,着重探讨了喷丝孔形状 ,聚合物摩尔质量、纺丝温度、熔体压力 ,喷丝板拉伸倍数 ,冷却条件与纤维异形度之间的关系。指出了不同孔形纺制的异形纤维 ,异形度相差很大 ;随着摩尔质量增加 ,异形度变大 ;温度和压力提高 ,异形度下降 ;纺丝速度影响不大 ;泵供量加大 ,冷却条件加剧 ,可使异形度上升  相似文献   

5.
对三叶型截面聚碳硅烷(PCS)纤维的制备工艺及纺线温度、压力、收丝速度等对纤维异形度的影响进行了研究。结果表明:纤维异形度随纺丝温度、纺丝压力、收丝速度的和蔼同而降低。熔点低的原料其异形度对压力的变化比高熔点原料更敏感。软化点高的PCS有利于纺制异形度较大的纤维 。  相似文献   

6.
以特性粘数1.51 dL/g的聚乳酸(PLA)为原料,采用三叶异形喷丝板一步法熔融纺丝制备出异形度为52%的三叶异形PLA纤维,研究了其热性能和机械性能。结果表明,PLA纤维的断裂强度和初始模量随拉伸倍数的增加而提高,经4倍拉伸,其断裂强度为2.39 cN/dtex,初始模量为17.27 cN/dtex。由于PLA的慢速冷却结晶过程,纤维在成形过程中形成不同晶层厚度的结晶结构。纺丝过程中纤维皮层结构受到更大的拉伸取向作用,并在纤维表面出现一定游离原纤化结构。  相似文献   

7.
8.
对三叶型截面聚碳硅烷(PCS) 纤维的制备工艺及纺丝温度、压力、收丝速度等对纤维异形度的影响进行了研究。结果表明: 纤维异形度随纺丝温度、纺丝压力、收丝速度的升高而降低。熔点低的原料其异形度对压力的变化比高熔点原料更敏感, 软化点高的PCS 有利于纺制异形度较大的纤维。  相似文献   

9.
三叶形醋酸纤维截面异形度的自动测量   总被引:1,自引:0,他引:1  
利用p-分位数法对三叶形醋酸纤维截面图像进行二值化处理,再利用截面填充的方法实现纤维截面之间的分离,测量三叶形纤维截面形态特征参数.根据三叶形纤维截面边界特点,通过图像的拐点确定纤维截面的外接圆和内切圆,计算出纤维截面的异形度.该测量方法快速、准确、实用,解决了手动测量效率低、精度不稳定等问题.  相似文献   

10.
扁平纤维熔融纺丝动力学模型   总被引:5,自引:0,他引:5  
根据熔融纺丝的基本原理,推导了扁平纤维的动力学模型。根据所建立的模型,模拟了纺丝工艺条件对纤维异形度的影响。模拟的结果表明:扁平纤维的异形度随着纺丝温度及特性黏度的升高而降低;泵供量一定时,纺速对异形度的影响不大;纺丝速度一定,异形度随着泵供量的增大而增大;吹风条件对异形度的影响较大;随着喷丝孔的长宽比的增大,异形度增加的幅度也较大;异形度在纺程上较小的区间内有明显的下降趋势,并随着泵供量的增加其下降的趋势变缓。  相似文献   

11.
以环己烯和1-己炔作为反应气氛,对聚碳硅烷(polycarbosilane,PCS)纤维进行化学气相交联不熔化处理,研究不熔化过程中PCS纤维的反应程度,凝胶含量变化以及烧成纤维的组成结构和性能.结果表明:在不饱和烃不熔化过程中,PCS分子结构中的Si-H键参与反应,Si-H键反应程度和PCS纤维的凝胶含量均随不熔化温度的提高逐渐增加且逐渐趋于稳定.制得的SiC纤维中氧的质量分数降低到5%~6%,纤维的拉伸强度达到2.60 GPa.X射线衍射谱显示:与空气不熔化相比,化学气相交联法制备的SiC纤维具有更好的β-SiC微晶结构.  相似文献   

12.
HSD三叶异形涤纶的研制   总被引:2,自引:1,他引:2  
介绍了在HSD三热辊超高速纺丝一步法设备上以5200m/min的超高速纺技术生产异形涤纶系列产品的探索性试验,并工业化大批量生产了83.3dtex/36f三叶异形丝。生产实践证明适当提高熔体温度,缓和侧吹风风速,减少卷绕张力,调整拉伸倍数等工艺,能生产出优质的三叶异形丝。  相似文献   

13.
本文简要评述了SiC粉末在制备方法和应用方面的最新进展,对不同方法所制SiC粉末的特点也作了评述,重点讨论了粒度在超细至亚微米范围内的SiC粉末的应用领域.  相似文献   

14.
连续碳纤维增韧SiC复合材料的制备与性能研究   总被引:14,自引:2,他引:14  
利用LPCVI技术制备了三维连续纤维增韧的碳化硅基复合材料,研究了复合材料致密度、界面相厚度以及纤维类型对碳化硅基复合材料性能的影响。研究表明:(1)随复合材料致密度的提高,由于基体和纤维之间力的传递效果变地,复合材料性能提高。(2)界面相厚度对复合材料性能的影响,可从其对界面结合强度、脱粘面上滑移阻力、界面相制备过程碳纤维的损伤程度以及界面相在基体沉积过程中对纤维的保护作用4个方面进行解释,界面  相似文献   

15.
高温烧结制备含铝碳化硅纤维   总被引:1,自引:0,他引:1  
对含较多氧的SiC(OAl)纤维进行高温处理,制备出近化学计量比的含铝碳化硅纤维,即SiC(Al)纤维.用X射线衍射分析、元素分析、扫描电镜、Raman光谱和29Si核磁共振谱等对烧成过程和SiC(Al)纤维的组成、结构以及性能进行了研究.研究发现:烧成过程中β-SiC的晶粒随着温度的升高而增大,纤维的直径逐渐降低;在1 300~1 600 ℃,由于CO和SiO气体的溢出,纤维结构逐渐变得疏松,抗拉强度下降;在1 600~1 800 ℃,随着温度的升高,仍有少量CO和SiO气体溢出,在烧结助剂铝的作用下,纤维结构逐渐致密,抗拉强度开始升高;在1 800 ℃烧成得到的SiC(Al)纤维,化学组成和结构与Nicalon纤维显著不同,具有近化学计量比组成,氧、游离碳以及SiCxOy相的含量大大低于Nicalon纤维,具有优良的耐高温性能和抗蠕变性能.  相似文献   

16.
碳化硅纳米晶须的制备   总被引:9,自引:2,他引:7  
戴长虹  水丽 《硅酸盐学报》2001,29(3):275-277
以SiO2纳米粉和自制的树脂热解碳作原料,用一种新的加热设备-双重加热炉合成了直径在5-30nm范围内,长径比在50-300之间的碳化硅纳米晶须。用化学分析方法,X射线衍射仪、透射电子显微镜等手段对碳化硅纳米晶须进行了表征。研究结果表明:用双重加热炉合成碳化硅纳米晶须的最佳湿度范围为1250-1300℃,恒温时间为60-75min,碳化硅纳米晶须的产率最高可达82%(质量分数)。  相似文献   

17.
采用包混工艺将酚醛树脂和硅粉制备成粉体先驱体,然后经碳化和煅烧,制备出球形度好、粒径分布窄且均匀的亚微米碳化硅粉体,其平均粒径约为0.1μm.亚微米碳化硅粉体的生成过程为:硅-酚醛树脂核壳粉体先驱体经过800℃碳化处理生成硅-碳核壳粉料;在1 500℃烧结,液态硅与碳壳内层反应生成碳化硅层;在热应力和液态硅的冲击下碳化硅壳破碎,形成的亚微米碳化硅颗粒进入液态硅中,通过碳化硅生成、破碎的不断循环,新的碳化硅层不断向碳层推进直至完全生成亚微米碳化硅球形粉体.  相似文献   

18.
碳化硅材料以其优异的性能得到了越来越广泛的应用,通过简要介绍碳化硅致密陶瓷的制备方法及其性能和总结近年来国内外的研究进展,来展望碳化硅致密陶瓷材料的研究发展趋势。  相似文献   

19.
碳化硅纤维中碳与氧含量的分析   总被引:1,自引:1,他引:1  
利用Fourier变换红外光谱、原子吸收及元素分析等方法,对碳化硅纤维中的C,Si,O的含量进行测定,并以此建立了间接确定纤维中C,O含量的计算方法用日本生产的商品牌号为Nicalon的SiC纤维进行r验证,得到与文献报道相符的结果。同时对国防科技大学研制的牌号为KD-I的SiC纤维中游离碳的含量,用间接计算方法所得的结果也与元素分析的实验值基本吻合,表明该方法同样适用于KD型SiC纤维,且可信度较高。  相似文献   

20.
含铝碳化硅纤维耐高温性能   总被引:1,自引:0,他引:1  
通过合成陶瓷纤维先驱体聚铝碳硅烷,制备了具有耐高温性能的含铝碳化硅SiC(Al)纤维。SiC(Al)纤维的化学组成为SiC1.15O0.026·Al0.013,主要结构是平均晶粒为95nm的βSiC,O和游离C含量均大大低于nicalon纤维,同时含有微量的Al和少量的αSiC。SiC(Al)纤维的平均直径为13μm,平均抗拉强度为2.3GPa。1400℃氩气中处理1h后,抗拉强度是原始强度的95%以上;1800℃氩气中处理1h后,抗拉强度保留率为71%。纤维的高温稳定性高于nicalon,Hi nicalon等商品SiC纤维,但低于TyrannoSA商品SiC纤维,并且SiC(Al)纤维的高温抗蠕变性能明显高于nicalon纤维。SiC(Al)纤维的高温稳定性取决于其低氧含量、低富碳含量以及异元素Al的助烧结和在高温下抑制SiC晶粒长大的作用,良好的抗蠕变性能决定于其高结晶度和低含量的SiCxOy相。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号