首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present our analysis of four molecular outflows from Class 0 (Cep E,L 1448) sources and higher mass objects (Cep A, DR 21). The emission line spectra of these outflows were observed in the mid- and far-infrared using the spectrometers (SWS, LWS) and the camera (ISOCAM) aboard the ISO satellite. We interpret the spectra using J- and C-type bow shock models and infer properties of both the outflow and surrounding gas. We find C-type bows with a shape parameter of s = 1.4 as the best interpretation of the measured line fluxes, independent of the object. The emission is partly caused by fluorescence.  相似文献   

2.
The expected lifetimes for molecular clouds has become a topic of considerable debate as numerical simulations have shown that MHD turbulence, the nominal means of support for clouds against self-gravity, will decay on short timescales. Thus it appears that either molecular clouds are transient features or they are resupplied with turbulent energy through some means. Jets and molecular outflows are recognized as a ubiquitous phenomena associated with star formation. Stars however form not isolation but in clusters of different density and composion. The ubiquity and high density of outflows from young stars in clusters make them an intriguing candidate for the source of turbulence energy in molecular clouds. In this contribution we present new studies, both observational and theoretical, which address the issue of jet/outflow interactions and their abilityto drive turbulent flows in molecular clouds. Our studies focus on scales associated with young star forming clusters. In particular we first show that direct collisions between active outflows are not effective at stirring the ambient medium. We then show that fossil cavities from “extinct” outflows may provide the missing link in terms of transferring momentum and energy to the cloud.  相似文献   

3.
The magnetic field plays a crucial role in star formation. It is involved in rotational braking, collapse braking, outflow formation and jet collimation. Direct observations of the field are difficult. However, the field can be indirectly estimated through the field-cushioned C-shocks which produce strong infrared molecular emission lines. In particular, a high field in the outflows will generate the ‘shock absorber’ signature: very broad H2lines. Such lines are indeed observed. Here we summarise recent progress in C-shock formation and stability. We demonstrate numerically that the Shock Absorbers are evolutionary and stable. The widths of H2lines then limit the magnetic field strength. A field of 6 mG is suggested for HH 212. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This paper is focused on the huge dynamical importance of the mass load in magnetized jet models. I will first review some `naive' questions (Why should jets be magnetized? What is the jet driving source?), then show why the jet mass load is so important and why numerical simulations are unable yet to deal with jet formation. I will afterwards briefly describe some results of the only accretion disc model addressing explicitely this question and present a possible star-disc magnetospheric interaction giving rise to time-dependent outbursts.  相似文献   

5.
Magnetically mediated disk outflows are a leading paradigm to explain winds and jets in a variety of astrophysical sources, but where do the fields come from? Since accretion of mean magnetic flux may be disfavored in a thin turbulent disk, and only fields generated with sufficiently large scale can escape before being shredded by turbulence, in situ field production is desirable. Nonlinear helical inverse dynamo theory can provide the desired fields for coronae and outflows. We discuss the implications for contemporary protostellar disks, where the (magneto-rotational instability (MRI)) can drive turbulence in the inner regions, and primordial protostellar disks, where gravitational instability drives the turbulence. We emphasize that helical dynamos are compatible with the magneto-rotational instability, and clarify the relationship between the two.  相似文献   

6.
Close links between jet evolution and protostellar evolution are beginning to be understood. Firstly, stellar jets are reviewed here, establishing the accretion-outflow connection. Then, outflows from young stars are reviewed, suggesting a synchronised development in the star and outflow. This yields a unification scheme in which rising molecular jets dominate the early protostellar epoch, followed by a jet-driven outflow stage and, finally, a bow-driven ballistic stage. This scheme is quantified, yielding the systematic changes in the bolometric, mechanical and shock luminosities and the cross-over phase from dense molecular jets to light atomic jets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We present a linear analysis of the vertical structure and growth of the magnetorotational instability in weakly ionised, stratified accretion discs. The method includes the effects of the magnetic coupling, the conductivity regime of the fluid and the strength of the magnetic field, which is initially vertical. The conductivity is treated as a tensor and assumed constant with height. The Hall effect causes the perturbations to grow faster and act over a much more extended section of the disc, when the magnetic coupling is low. As a result, significant accretion can occur closer to the midplane, despite the weak magnetic coupling, because of the high column density of the fluid. This is an interesting alternative to the commonly held view that accretion is relevant mainly in the surface regions of discs, which have a better coupling, but a much lower fluid density.  相似文献   

8.
本文研究了大质量黑洞吸积盘的自引力,用薄盘位形上积分的方法计算了吸积盘自引力的径向与垂向分量,着重讨论了径向自引力。主要结果为:对于大质量黑洞(M~10~8—10~(10)M_⊙)吸积盘,在(R/R_g)~10~5—10~4的距离上,径向自引力会超过中心天体引力。在这个距离上,吸积盘的动力学结构完全不同于开普勒盘。提出了径向自引力不稳定扰动作为一种能源机制。本文还得到吸积盘自引力与中心天体引力量级比较的两个判据,并由此得到大质量黑洞吸积盘外半径的近似解析估计。本文结果可用于类星体和星系核吸积盘。  相似文献   

9.
We discuss the application of meridionally self-similar models to winds and jets from hot coronae, in particular in the central region of accretion disks. A summary of how they may help understanding the evolution of jets from young stars is outlined. Then we discuss their application to the classification of AGN jets and extension to the relativistic regime of these exact axisymmetric solutions. Finally we discuss how it is possible to extend the polytropic equation of state and Parker winds to the relativistic regime to have a simple toy model for understanding thermal acceleration.  相似文献   

10.
The youngest protostars are obscured from direct view by a high column of molecular gas. Nevertheless, their presence is betrayed through spectacular infrared outflows. I demonstrate here that infrared spectroscopy has the potential to reveal a remarkable variety of details concerning the underlying physics. Near-infrared spectroscopic analyses of the OMC-1, DR 21 & Cepheus A outflows are discussed here. Molecular hydrogen is vibrationally excited by collisions in shock waves. In OMC-1, the ortho-para ratio has been mapped. The ratio is close to 3, suggesting efficient shock thermalisation. In DR 21, shocked (up to the first vibrational level) and fluorescent (higher v-levels) components have been successfully separated. In Cepheus A, non-LTE effects imply low densities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
We present in this contribution a revision of the origin, main properties and open issues in the field of winds of massive blue stars, with a particular emphasis in the ultraviolet observations  相似文献   

12.
The history of hydrodynamic numerical simulations for accretion disks in close binary systems is reviewed, in which emphasis is placed, in particular, on the facts that spiral shock waves were numerically found in 1986 by researchers including one of the present authors and that spiral structure was discovered in IP Pegasi in 1997 by Steeghs et al. The results of our two and three-dimensional numerical simulations in recent years are then summarized, with comparison being made with observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
This review focuses on physics of the cooling zones behind radiative shocks and the emission line diagnostics that can be used to infer physical conditions and mass loss rates in jets from young stars. Spatial separations of the cooling zones from the shock fronts, now resolvable with HST, and recent evidence for C-shocks have greatly increased our understanding of how shocks in outflows interact with the surrounding medium and with other material within the flow. By combining multiple epoch HST images, one can create `movies' of flows like those produced from numerical codes, and learn what kinds of instabilities develop within these systems.  相似文献   

14.
Classification of young stellar objects (YSOs) into different evolutionary stages helps us to understand the formation process of new stars and planetary systems. Such classification has traditionally been based on spectral energy distribution (SED) analysis. An alternative approach is provided by supervised machine learning algorithms, which can be trained to classify large samples of YSOs much faster than via SED analysis. We attempt to classify a sample of Orion YSOs (the parent sample size is 330) into different classes, where each source has already been classified using multiwavelength SED analysis. We used eight different learning algorithms to classify the target YSOs, namely a decision tree, random forest, gradient boosting machine (GBM), logistic regression, naïve Bayes classifier, \(k\)-nearest neighbour classifier, support vector machine, and neural network. The classifiers were trained and tested by using a 10-fold cross-validation procedure. As the learning features, we employed ten different continuum flux densities spanning from the near-infrared to submillimetre wavebands (\(\lambda= 3.6\mbox{--}870~\upmu\mbox{m}\)). With a classification accuracy of 82% (with respect to the SED-based classes), a GBM algorithm was found to exhibit the best performance. The lowest accuracy of 47% was obtained with a naïve Bayes classifier. Our analysis suggests that the inclusion of the \(3.6~\upmu\mbox{m}\) and \(24~\upmu\mbox{m}\) flux densities is useful to maximise the YSO classification accuracy. Although machine learning has the potential to provide a rapid and fairly reliable way to classify YSOs, an SED analysis is still needed to derive the physical properties of the sources (e.g. dust temperature and mass), and to create the labelled training data. The machine learning classification accuracies can be improved with respect to the present results by using larger data sets, more detailed missing value imputation, and advanced ensemble methods (e.g. extreme gradient boosting). Overall, the application of machine learning is expected to be very useful in the era of big astronomical data, for example to quickly assemble interesting target source samples for follow-up studies.  相似文献   

15.
16.
We present numerical simulations of the evolution of low-mass, isothermal, molecular cores which are subjected to an increase in external pressure. If the external pressure increases very slowly, the core approaches instability quite quasi-statically. However, for faster compressions, a compression wave is driven into the core (Hennebelle, P., Whitworth, A., Gladwin, P. and André, P.: 2003a MNRAS 340, 870). Quantitative comparisons with observational velocity and density profiles are presented. The consequences of this compression for the fragmentation of the cloud is investigated and discussed.  相似文献   

17.
We discuss a self-consistent unified model of the matter outflows from AGNs based on a theoretical approach and involving data on AGN evolution and structure. The model includes a unified geometry, two-phase gas dynamics, radiation transfer, and absorption spectrum calculations in the UV and X-ray bands. We briefly discuss several questions about the mass sources of the flows, the covering factors, and the stability of the narrow absorption details.  相似文献   

18.
The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully electromagnetic, particle-in-cell (PIC) simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.  相似文献   

19.
The formation and collapse of a protostar involves the simultaneous infall and outflow of material in the presence of magnetic fields, self-gravity and rotation. We use self-similar techniques to self-consistently model the anisotropic collapse and outflow by using a set of angle-separated self-similar equations. The outflow is quite strong in our model, with the velocity increasing in proportion to radius, and material formally escaping to infinity in the finite time is required for the central singularity to develop.
Analytically tractable collapse models have been limited mainly to spherically symmetric collapse, with neither magnetic field nor rotation. Other analyses usually employ extensive numerical simulations, or either perturbative or quasistatic techniques. Our model is unique as an exact solution to the non-stationary equations of self-gravitating magnetohydrodynamics (MHD), which features co-existing regions of infall and outflow.
The velocity and magnetic topology of our model is quadrupolar, although dipolar solutions may also exist. We provide a qualitative model for the origin and subsequent evolution of such a state. However, a central singularity forms at late times, and we expect the late-time behaviour to be dominated by the singularity, rather than depend on the details of its initial state. Our solution may, therefore, have the character of an attractor among a much more general class of self-similarity.  相似文献   

20.
Astronomy Letters - Small perturbations of a protostellar disk with vertical and azimuthal magnetic field components are considered in terms of Hall magnetohydrodynamics. The dispersion equation...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号