首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
为了解阜新市城区O3(臭氧)污染特征及其影响因素,基于2020年1月1日~10月27日空气质量监测数据气象参数,分析了阜新城区O3月浓度、日浓度变化特征,探讨了温度、湿度、风速及风向等气象要素对O3污染的总体影响。结果表明:在气温大于30℃、相对湿度为40%~45%、风速为3~4级、盛行东北风向和西南风向的条件下,O3浓度超标天数占监测时段总超标天数的66.6%;温度、相对湿度、风速、风向显著影响O3污染水平,超标日的气象条件可作为阜新市城区O3污染预测指标。  相似文献   

2.
为了解石家庄市主城区O3(臭氧)污染特征及其影响因子,基于2015-2018年石家庄市空气质量连续监测资料和同期气象数据分析了主城区O3污染总体特征及气象成因.结果表明:①石家庄市主城区大气光化学污染日益严峻,ρ(O3)日均值由2015年的47 μg/m3增至2018年的66 μg/m3,ρ(O3)超过GB 3095-2012《环境空气质量标准》二级标准限值的天数由2015年的20 d增至2018年的70 d.②ρ(O3)存在明显的季节性差异,呈夏季[(89±33)μg/m3] >春季[(69±25)μg/m3] >秋季[(40±26)μg/m3] >冬季[(28±16)μg/m3]的特征;ρ(O3)日变化呈单峰型分布,谷值出现在06:00-07:00,峰值出现在15:00-16:00,且15:00-17:00是ρ(O3)超标的高发时段.③ρ(O3)与气温呈指数关系,当气温为20~25、25~30、≥ 30℃时,ρ(O3)日均值分别为75、90及119 μg/m3.ρ(O3)在相对湿度为60%时存在拐点,当相对湿度≤ 60%时,ρ(O3)随相对湿度的增大而上升;当相对湿度>60%时,ρ(O3)随相对湿度的增大而下降.风速与ρ(O3)呈分段线性关系,当风速 < 2 m/s时,ρ(O3)随风速的增加而上升;当风速≥ 2 m/s时,ρ(O3)随风速的增加而下降.④影响石家庄市主城区ρ(O3)升高的污染源主要位于其东-东南-南方位,其次为东北-东方位,而西部和北部地区则较少.⑤石家庄市主城区ρ(O3)超标多发生在气温>20℃,相对湿度介于40%~70%之间,风速在1.5~3.0 m/s之间的气象背景下,经统计,当气象条件同时符合上述三项气象要素时,ρ(O3)超标天数占3-10月总超标天数的66.5%.研究显示,气温>20℃、相对湿度为40%~70%、风速为1.5~3.0 m/s的气象条件可初步作为石家庄市主城区O3污染的预警指标.   相似文献   

3.
基于环境空气质量和气象在线监测数据,研究了郑州市近地面臭氧(O3)污染的年际变化、空间差异及气象影响,并分析了 O3传输路径和潜在源区.结果表明,2014~2018年郑州市近地面03污染超标时间跨度增加,城区站点03日最大8 h滑动平均值(MDA8)第90%分位呈显著上升趋势(P<0.05),增长速率为15.50μg·...  相似文献   

4.
河南省臭氧污染特征与气象因子影响分析   总被引:1,自引:0,他引:1  
利用环境空气质量监测站和国家基准地面气候站数据,研究了2017年河南省臭氧(O3)污染时空特征及其与颗粒物、前体物和气象因子关系.结果表明,河南省2017年O3日最大8 h滑动平均值(MDA8)呈现夏季>春季>秋季>冬季的特征,年均值为108μg·m-3;各地市均有不同程度O3超标情况,其中,安阳超标天数高达88 d,信阳最少为17 d;春末夏初(5月和6月) O3污染最为严重,O3 MDA8月均浓度在140μg·m-3以上,并在6月达到峰值;定性和定量分析显示O3 MDA8月均浓度与颗粒物,O3小时浓度与CO、NO2呈负相关;不同季节、不同城市O3MDA8与气象因子(日照时长、气温、降雨、能见度、相对湿度及风速)的相关性具有差异.  相似文献   

5.
本文基于淄博市2019年18个自动监测站连续1 a的O3与前体物(NOx、 VOCs和CO),及常规气象监测数据(气温、相对湿度、风速和能见度),选取城区和郊区代表性站点,研究了O3与前体物的污染特征以及O3生成的影响因素.结果表明,淄博市2019年O3-8h浓度超标率为25.8%,超标天多出现在5~9月;城区NOx浓度高于郊区,而O3和VOCs浓度较低;各污染物的小时变化率具有明显的季节特征,秋冬季节O3上升和前体物下降时间均较春夏季节晚1 h左右,且O3生成累积的高峰时段缩短,城区O3浓度的整体上升速率高于郊区;对O3及各影响因素的相关性分析、偏相关分析及线性回归分析得到,O3与前体物和相对湿度呈负相关,与能见度、气温和风速呈正相关,各因素间存在相互影响;城区站点O3生成的主控因子有相对湿度、 NO<...  相似文献   

6.
随着京津冀区域臭氧(O3)污染问题日渐突出,探究和分析京津冀区域O3变化特征和污染过程形成原因对区域大气污染防治工作具有重要意义.观测结果显示,春夏季京津冀区域较高的O3浓度呈现南高北低的分布,北京、天津和石家庄这3座城市O3高浓度往往伴随着偏南风的影响.基于WRF-Chem模式模拟和过程分析技术对2019年京津冀区域O3变化特征和成因进行了深入分析,典型城市化学过程、垂直混合和输送的日变化有着鲜明的季节变化差异.其中在夏季午后化学过程是各城市O3浓度增加的主要来源;垂直混合导致天津和石家庄O3浓度增加,但使得北京O3浓度减少;天津和石家庄存在净输出,而北京则为净流入.通过对比分析O3污染和清洁过程结果表明,化学过程主导北京和石家庄污染过程午后O3浓度增加,天津则为垂直混合,此外,北京和石家庄存在O3净输入,天津则为净输出;而清洁过程中,垂直混合主...  相似文献   

7.
结合2014~2020年临汾市臭氧逐小时质量浓度和同期气象数据、再分析数据以及潜在源贡献函数法(PSCF)对临汾市O3污染时空变化特征、与气象因子的关系以及传输路径及潜在源分布开展研究.结果表明,临汾市近年来臭氧污染日益严重,O3_8h_max年均质量浓度整体呈现上升趋势,2020年相对于2014年增加78.79%;月变化特征呈现“M”双峰型,季节变化峰值出现在夏季,而日变化受近地面大气光化学过程影响显著,呈较为明显的单峰单谷分布,峰值出现在14:00~16:00.O3浓度与气温和日照时数呈显著线性正相关,当研究区相对湿度为40%~60%,气温高于20℃,风速区间为2~6m/s时易出现高浓度O3污染.聚类分析表明临汾市O3重污染天气期间以短距离输送气流为主,高O3浓度除受到本地生成影响外,还受到省内临近城市及陕西省中部、河南省北部重工企业排放的大量NOx和VOCs传输的影响.因此,针对临汾市O3污染在严格控制本地污染源排放的前提下,必须加强汾渭平原地区的联防联控,才能有效缓解该区域大气污染的连片发生.  相似文献   

8.
基于2014~2017年京津冀13座城市的O3-8h数据,分析O3时间变化特征及污染状况.在此基础上,结合同期气象数据研究近地层O3浓度与气象要素的关系.结果表明:2014~2017年京津冀区域O3-8h整体呈上升趋势,增长率为4.50μg/m3.区域内O3污染整体加重,北京、保定O3污染较为严重;2014~2015年O3浓度与超标情况的月变化主要呈单峰型变化,峰值出现在5月;而2016~2017年为不规则双峰型变化,峰值出现在5~6月和9月.与气象因子的相关性表明:气象要素对O3的影响具有明显的季节差异,其中春、夏、秋季气温是影响O3浓度变化的主要因素,而在冬季相对湿度与风速为影响O3浓度变化的主要因素.此外,分析表明北京、天津、石家庄3大城市夏季形成高浓度O3的阈值明显不同.  相似文献   

9.
近年来城市臭氧(O3)污染问题日益突出,影响O3污染的关键气象因子尚不明确,因此分析典型城市——苏州的O3污染特征,探究O3污染的高影响气象因子,对该区域大气污染防治具有重要意义.基于苏州环境监测中心2015~2020年4~9月逐小时O3浓度数据及同期气象观测资料,应用相关分析和机器学习方法对其开展相关分析研究.结果表明:(1) 6年间O3污染高发季,O3污染超标率均达20%以上,O3污染日数和以O3为首要污染物的污染日数占比均逐年上升,O3污染问题日益凸显;(2) O3浓度存在单峰日变化特点,谷值出现在07:00前后,峰值出现在15:00~16:00;其与气温和太阳辐射能的日内变化趋势较一致,但其浓度峰值出现时刻又滞后于二者. 2017年和2019年O3有典型的“周末效应”,周末较高的太阳辐照度对O3浓...  相似文献   

10.
乌海市地形复杂,周边工业园区分布密集,近年来夏季O3污染问题突出,且污染特征与形成机制尚不明确,分析乌海市O3变化特征,探究O3污染形成机制对该区域大气污染防治具有重要意义.本文在分析乌海市2018年6~8月3次持续O3污染过程特征的基础上,利用WRF-CMAQ模式系统进行模拟并根据过程分析输出结果对污染的成因进行了深入分析,探讨了区域输送和局地光化学反应对乌海市O3的影响.结果表明,乌海市夏季O3呈现"单峰"的日变化特征,近地面O3与向下短波辐射和气温显著呈正相关,与相对湿度呈负相关;空间分布上,乌海市3个工业园区白天和夜间均为O3低值区,乌海西南部宁夏石嘴山地区、乌海城区和西北部乌兰布和沙漠地区白天为O3高值区;过程分析结果表明,输送和化学过程及其相对大小对乌海市O3有决定性影响,6月和7月的污染过程中局地光化学反应和输送共同导致O3显著升高,且化学过程的影响是输送的两倍左右,8月O3的升高主要为输送作用的贡献;进一步对输送作用进行分解可知偏南和西北方向的输送对O3的升高有较大贡献,结合前体物的排放,可能的传输来源为宁夏银川、石嘴山及巴彦淖尔等区域,因此,乌海市应在控制本地排放的基础上,加强区域联防联控,减少区域传输对O3的影响.  相似文献   

11.
近年来,京津冀地区近地面臭氧浓度呈现上升趋势,臭氧污染超标情况严重.目前由于前体物源排放清单、臭氧生成和扩散的物理和化学过程机制存在不足等原因,导致了数值模型在预报夏季臭氧浓度时仍然存在较大偏差,而时间序列分析方法由于具有建模简单、计算成本低的特点,在臭氧污染预报中具有很好的应用前景.本研究利用华北区域大气本底站上甸子...  相似文献   

12.
李睿  魏巍  王兴锋  王晓琦  程水源 《环境科学》2023,44(10):5400-5409
近年来京津冀区域夏季臭氧(O3)体积分数仍居高位,轻中度污染频繁发生,相关反应机制研究亟需开展.利用WRF-Chem模式对该区域2018年夏季代表月O3浓度进行模拟,并基于Brute-Force方法探究了区域层面前体物减排的O3变化.O3在不同排放情景的变化表明,该区域O3反应机制以VOCs控制区与非敏感区为主,VOCs控制区主要聚集京津冀中部,呈南北带状分布,面积占比15.60%~26.59%.区域各市城区的O3浓度对前体物排放的相对响应强度(RRI)具有很大的空间差异性,对于VOCs,RRI_VOC在0.03~0.16范围内;而对于NOx,RRI_NOx在-0.40~0.03范围内.纬度越高的城区,RRI值越剧烈,表明了越为显著的区域输送影响.前体物排放强度高的城区,RRI_NOx值越低,暗示RRI_NOx对当地NO2浓度的负向依赖;但RRI_VOC与NO2水平无明显关联,更依赖于对前体物相对丰度(VOCs :NOx).RRI_VOC与RRI_NOx比值在多数城市表现为负值,VOCs协同减排以抑制O3浓度恶化十分必要;该比值的绝对值在工业化和城市化高的城市远低于普通中小城市,意味着这些城市VOCs协同减排的要求将更高.然而,即使在前体物50%减排下,区域各城市O3浓度改善仍然有限,毗邻省份的区域外联合治理也依然重要.  相似文献   

13.
基于2019年五指山背景点、海口市和三亚市的环境空气自动监测数据和气象观测资料,分析了海南省背景区域和重点城市O3及其前体物NO2污染特征;结合挥发性有机物(VOCs)在线监测数据,分析了五指山背景点VOCs的时间变化规律、O3浓度高值月份O3及其前体物VOCs和NOx的污染特征以及VOCs的臭氧生成潜势(OFP).结果表明,O3是影响五指山背景点空气质量的关键污染物,五指山背景点O3日最大8 h浓度平均值与海口市和三亚市显著相关.背景点NO2月均浓度水平显著低于城市点,然而背景点和城市点O3月均浓度水平和变化趋势高度一致.背景点O3变化与风向密切相关,春夏季偏南风频率较高,O3浓度相对较低;秋冬季以东北风为主,易受内陆污染输送影响,O3浓度较高.五指山背景点春夏季VOCs体积分数低于秋冬季,但对应的OFP高于秋冬季;其中异戊二烯夏季体积分数显著高于秋冬季,且其夏季体积分数占总挥发性有机物的比例最高,对应的OFP贡献率可达70%以上,O3则表现出秋冬季显著高于夏季的特征.11月O3高浓度时段乙炔和芳香烃的体积分数较清洁日出现较大上升,同时其对应的OFP显著上升.VOCs优势物种和OFP主要贡献物种的分析结果表明,O3高浓度时段机动车尾气和油气挥发排放源对五指山背景点VOCs的化学组成和OFP有重要贡献.  相似文献   

14.
为了解天津市PM2.5-O3复合污染特征及气象成因,基于2013~2019年高时间分辨率的PM2.5、 O3和气象观测数据,对天津市PM2.5-O3复合污染特征、污染物浓度分布以及关键气象因子进行分析.结果表明,2013~2019年,天津市复合污染日94 d,总体呈现下降趋势,前期(2013~2015年)下降明显,由2013年的23 d降至2015年的11 d,下降52.2%;后期(2016~2019年)波动式上升,由2016年的12 d升至2019年的14 d,上升16.7%.复合污染日主要出现在每年的3~9月,年际变化较大,2013~2016年在6~8月出现较多,2017~2019年在4月和9月出现较多.小时ρ(PM2.5)在75~85μg·m-3时,小时ρ(O3)存在峰值区(301~326μg·m-3).在所有O3污染中,PM2.5...  相似文献   

15.
为深入探究典型热带海滨城市环境空气臭氧(O3)污染特征与成因,于2019年6~10月在海南省海口市城区站点开展O3及其前体物观测实验,较为全面地分析了O3污染特征,基于观测的模型(OBM)识别了O3生成控制区,分析了O3前体物敏感性,并开展了O3前体物减排效果评估.结果表明:(1)海口市O3污染主要出现在9月和10月,观测期间O3日最大8h滑动平均值范围为39~190μg·m-3,O3日变化呈单峰型,于14:00左右达到峰值.(2)海口市超标日NOx和VOCs浓度高于达标日,前体物浓度的升高是导致O3污染的内在因素,同时O3污染受区域传输影响,污染物主要来自于海口市东北部地区.(3)海口市O3生成处于VOCs和NOx协同控制区.9~10月O3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号