首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thiaisoleucine-resistant mutant, ASAT–372, derived from a threonine producer of Corynebacterium glutamicum, KY 10501, produced 5 mg/ml each of l-isoleucine and l-threonine. l-Isoleucine productivity of ASAT–372 was improved stepwise, with concurrent decrease in threonine production, by successively endowing it with resistivity to such substances as ethionine, 4-azaleucine and α-aminobutyric acid. The mutant strain finally selected, RAM–83, produced 9.7 mg/ml of l-isoleucine with a medium containing 10% (as sugar) molasses.

l-Isoleucine production was significantly affected by the concentration of ammonium sulfate in the fermentation medium. At 4% ammonium sulfate l-isoleucine production was enhanced whereas l-threonine production was suppressed. At 2% ammonium sulfate l-threonine production was stimulated while l-isoleucine production decreased.  相似文献   

2.
Polyauxotrophic mutants of Corynebacterium glutamicum which have additional requirements to L-phenylalanine were derived from L-tyrosine producing strains of phenylalanine auxotrophs, C. glutamicum KY 9189 and C. glutamicum KY 10233, and screened for L-tyrosine production. The increase of L-tyrosine production was noted in many auxotrophic mutants derived from both strains. Especially some double auxotrophs which require phenylalanine and purine, phenylalanine and histidine, or phenylalanine and cysteine produced significantly higher amounts of L-tyrosine compared to the parents, A phenylalanine and purine double auxotrophic strain LM–96 produced L-tyrosine at a concentration of 15.1 mg per ml in the medium containing 20% sucrose. L-Tyrosine production by the strain decreased at high concentrations of L-phenylalanine.  相似文献   

3.
Corynebacterium glutamicum mutants carrying both auxotrophy and histidine analog-resistance were derived by a mutagenic treatment, and their histidine productivity was compared with that of a triazolealanine (TRA)-resistant histidine producer, C. glutamicum KY-10260. As a result, a leucine auxotrophic TRA-resistant mutant, Rα-88 was selected out of 164 auxotrophic derivatives of KY-10260. It produced histidine at a distinctly higher concentration than the parent strain under every condition tested. The concentration reached 11 mg/ml or 5.8% (w/w) of the initial sugar. Addition of an excessive amount of leucine to the medium inhibited the histidine production together with the by-production of valine by this mutant. Thiazolealanine-resistant mutants derived from a tyrosine auxotroph, a phenylalanine auxotroph and a tryptophan auxotroph gave the same or lower production in comparison with KY-10260.  相似文献   

4.
Homoserine dehydrogenases and aspartokinases in l-threonine- or l-threonine and l-lysine-producing mutants derived from Corynebacterium glutamicum KY 9159 (Met?) were studied with respect to the sensitivity to the inhibition by end products, l-threonine and l-lysine. The activities of homoserine dehydrogenases in the mutants which produced l-threonine or l-threonine and l-lysine were slightly less susceptible to the inhibition by l-threonine than the activity in the parent strain, KY 9159. The aspartokinases in the threonine-producing mutants, KY 10484 and KY 10230, which were resistant to α-amino-β-hydroxylvaleric acid (AHV, a threonine analog) and more sensitive to thialysine (a lysine analog) than the parent, were sensitive to the concerted feedback inhibition by l-lysine and l-threonine by about the same degree as KY 9159. The aspartokinase in an AHV- and thialysine-resistant mutant, KY 10440, which was derived from KY 10484 and produced about 14 mg/ml of l-threonine in a medium containing 10% glucose was less susceptible to the concerted feedback inhibition than KY 10484 or KY 9159, although the activity was still under the feedback control. In the parent strain, l-threonine activated aspartokinase activity in the absence of ammonium sulfate, an activator of the enzyme, but partially inhibited the activity in the presence of the salt. On the other hand, the enzyme of KY 10440 was activated by l-threonine either in the presence or in the absence of the salt. In another AHV- and thialysine-resistant mutant, KY 10251, which was derived from KY 10230 and produced both 9 mg/ml of l-threonine and 5/5 mg/ml of l-lysine, l-threonine and l-lysine simultaneously added hardly inhibited the activity of aspartokinase.

Implications of these results are discussed in relation to l-threonine or l-lysine production, AHV or thialysine resistance and regulation of l-threonine biosynthesis in these mutants.  相似文献   

5.
He N  Li Y  Chen J 《Bioresource technology》2004,94(1):99-105
The production of a novel polygalacturonic acid bioflocculant REA-11 from a newly isolated strain, Corynebacterium glutamicum CCTCC M201005, was investigated. Sucrose was chosen as a carbon source for REA-11 production. Complex nitrogen sources containing urea and an organic nitrogen compound enhanced both bacterial growth and REA-11 production, among which urea plus corn steep liquor was shown to be the most efficient combination. A cost-effective medium for REA-11 production mainly comprised 17 g/l sucrose, 0.45 g/l urea, and 5 ml/l corn steep liquor, under which conditions the flocculating activity reached 390 U/ml. The molar ratio of carbon to nitrogen (C/N) significantly affected REA-11 production, where a C/N ratio of 20:1 was shown to be the best. Interestingly, by simultaneously feeding sucrose and urea at a C/N ratio of 20:1 at 24 h of fermentation, REA-11 production (458 U/ml) was enhanced by 17% compared to the control. In a 10 l jar fermentor, lower dissolved oxygen tension was favorable for REA-11 production: a flocculating activity of 520 U/ml was achieved at a kappaLa of 100 h(-1). REA-11 raw product is relatively thermo-stable at acidic pH ranges of 3.0-6.5. Preliminary application studies showed that REA-11 had stronger flocculating activity to Kaolin clay suspension compared to chemical flocculants. In addition, the capability of decolorizing molasses wastewater indicates the industrial potential of this novel bioflocculant.  相似文献   

6.
Penicillin-resistant mutants were derived from Corynebacterium hydrocarboclastus R-7. One of them produced 84 g/liter of l-glutamic acid from hydrocarbon, though its parent strain produced 26 g/liter.

The penicillin-resistant mutant had stronger activities of substrate consumption and oxygen absorption than the parent strain, and this was one of the reasons for the accumulation of a larger quantity of l-glutamic acid.

The interacellular content of phosphatidyl inositol mannoside (P.I.M) was related to the glutamate productivity, and the higher glutamate productivity of the penicillin-resistant mutant was supposed to be related to the remarkable diminution in the content of P.I.M.  相似文献   

7.
8.
Under oxygen deprivation, aerobic Corynebacterium glutamicum produce organic acids from glucose at high yields in mineral medium even though their proliferation is arrested. To develop a new, high-productivity bioprocess based on these unique features, characteristics of organic acid production by C. glutamicum under oxygen deprivation were investigated. The main organic acids produced from glucose under these conditions were lactic acid and succinic acid. Addition of bicarbonate, which is a co-substrate for anaplerotic enzymes, increased the glucose consumption rate, leading to increased organic acid production rates. With increasing concentration of bicarbonate, the yield of succinic acid increased, whereas that of lactic acid decreased. There was a direct correlation between cell concentration and organic acid production rates even at elevated cell densities, and productivities of lactic acid and succinic acid were 42.9 g l−1 h−1 and 11.7 g l−1 h−1, respectively, at a cell concentration of 60 g dry cell l−1. This cell-recycling continuous reaction demonstrated that rates of organic acid production by C. glutamicum could be maintained for at least 360 h.  相似文献   

9.
The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures.  相似文献   

10.
The chorismate mutase and prephenate dehydratase genes of phenylalanine producing Corynebacterium glutamicum K38, which is resistant to p-fluorophenylalanine and m-fluorophenylalanine, were cloned into plasmid pCE53 in C. glutamicum KY9456, which lacks chorismate mutase and prephenate dehydratase. One of the resultant plasmids, pCmB4, contained a 9.4kb BamHI DNA fragment inserted into the unique BamHl site of pCE53. Plasmid pCmB4 complemented a phenylalanine and tyrosine double auxotroph of C. glutamicum KY9456. Introduction of pCmB4 into C. glutamicum RRL5 resulted in an about ten times increase in chorismate mutase activity. C. glutamicum K38 carrying the plasmid accumulated 19.0mg/ml of phenylalanine (50% increase over the yield of K38).  相似文献   

11.
The isolation of chloramphenicol resistant strains from Corynebacterium hydrocarboclastus KY 4339 (rough type) was examined to seek a good source of corynecins (analogs of chloramphenicol). Various mutants resistant to chloramphenicol were isolated in the range from 50 to 1000 µg/ml by adaptation or induced mutagenesis by N-methyl-N′-nitro-N-nitro-soguanidine. Productivities of mutants related apparently to the degree of resistance from 50 to 500 µg/ml. Highly resistant mutants capable of growing in the presence of 1000 µg of chloramphenicol per ml showed decreased productivity which might be related to their lower growth rate in the fermentation medium.

Further attempts to derive resistant mutants to structural analogs of aromatic amino acids resulted in only a slight improvement of productivity, indicating that aromatic amino acids might play minor regulatory roles in corynecins synthesis.

The increase in productivity of corynecins by the best strain was about 4.5 fold of the parental strain.  相似文献   

12.
13.
14.
15.
Regulatory properties of the enzymes involved in aromatic amino acid biosynthesis in the mutant of Corynebacterium glutamicum which produces a large amount of aromatic amino acids were examined. A phenylalanine auxotrophic l-tyrosine producer, pr-20, had a 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthetase released from the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a two-fold derepressed chorismate mutase. A pair of l-phenylalanine and l-tyrosine still strongly inhibited the chorismate mutase activity, though the enzyme was partially released from the inhibition by l-phenylalanine alone. A tyrosine auxotrophic l-phenylalanine producer, PFP-19-31, had a DAHP synthetase sensitive to the feedback inhibition by l-phenylalanine, l-tyrosine and l-tryptophan and had a prephenate dehydratase and a chorismate mutase both partially released from the feedback inhibition by l-phenylalanine. The mutant produced a large amount of prephenate as well as l-phenylalanine. A phenylalanine and tyrosine double auxotrophic l-tryptophan producer, Px-115-97, had an anthranilate synthetase partially released from the feedback inhibition by l-tryptophan and had a DAHP synthetase sensitive to the feedback inhibition. These data explained the mechanism of the production of aromatic amino acids by these mutants and supported the in vivo functioning of the control mechanisms of aromatic amino acid biosynthesis in C. glutamicum previously elucidated in vitro experiments.  相似文献   

16.
We previously observed secretion of active-form transglutaminase in Corynebacterium glutamicum by coexpressing the subtilisin-like protease SAM-P45 from Streptomyces albogriseolus to process the prodomain. However, the N-terminal amino acid sequence of the transglutaminase differed from that of the native Streptoverticillium mobaraense enzyme. In the present work we have used site-directed mutagenesis to generate an optimal SAM-P45 cleavage site in the C-terminal region of the prodomain. As a result, native-type transglutaminase was secreted.  相似文献   

17.
Excellent l-glutamine producers were screened for among sulfaguanidine resistant mutants derived from the wild type l-glutamic acid-producing bacteria, Brevibacterium flavum, Brevibacterium lac to fermentum, Corynebacterium glutamicum and Microbacterium ammoniaphilum.

The best strain, No. 1~60, was a sulfaguanidine resistant mutant derived from B. flavum 2247 by mutation. Strain No. 1~60 accumulated 41.0 mg/ml of l-glutamine after 48 hr of cultivation from 10% glucose as a carbon source. This yield was the highest among those so far reported.

The addition of Mn2 + (2 ppm) to the standard medium for B. flavum 2247 decreased the l- glutamine production and increased the l-glutamic acid excretion markedly. On the contrary, strain 1 —60 was not affected the Mn2+ (2 ppm) addition at all.

Glutamate kinase activity and the intracellular content of ATP in sulfaguanidine resistant mutant No. 1~60 were higher than those in the parent strain, B. flavum 2247.

It was confirmed that the increase in glutamate kinase and the increase in internal ATP, which were important for the l-glutamine synthesis, were very effective for the improvement of l-glutamine-producing mutants.  相似文献   

18.
Two auxotrophic mutants of Corynebacterium glutamicum were found to produce a large amount of l-proline in the culture medium. High concentration of MgSO4 or MnSO4 in the medium stimulated the l-proline production by an isoleucine auxotroph. Optimum concentration of l-isoleucine was 200 μg/ml, and the higher concentration of l-isoleucine reduced the l-proline production. The auxotroph produced 14.8 mg/ml of l-proline when cultured in a medium containing 12% glucose, 1.7% NH4C1,0.6% MgSO4·7H2O, 0.06% MnSO4·4H2O and 200 μg/ml of l-isoleucine. The other mutant, whose growth responds to the bases of nucleic acids, produced 7 to 13 mg/ml of l-proline in a cane molasses (15%, as glucose concentration)-medium containing 2% of the acid-hydrolyzate of soybean meal. The l-proline production by this mutant increased to a level of 27 to 31 mg/ml when the growth was suppressed by the addition of 4% NH4C1 to the medium, or by the addition of 2 mg/ml of polyoxyethylenestearylamine, a surfactant, to a culture at an appropriate stage of the fermentation.  相似文献   

19.
GTP-dependent phosphoenolpyruvate carboxykinase (PCK) is the key enzyme that controls the blood glucose level during fasting in higher animals. Here we report the first substrate-free structure of a GTP-dependent phosphoenolpyruvate (PEP) carboxykinase from a bacterium, Corynebacterium glutamicum (CgPCK). The protein crystallizes in space group P21 with four molecules per asymmetric unit. The 2.3 Å resolution structure was solved by molecular replacement using the human cytosolic PCK (hcPCK) structure (PDB ID: 1KHF) as the starting model. The four molecules in the asymmetric unit pack as two dimers, and is an artifact of crystal packing. However, the P-loop and the guanine binding loop of the substrate-free CgPCK structure have different conformations from the other published GTP-specific PCK structures, which all have bound substrates and/or metal ions. It appears that a change in the P-loop and guanine binding loop conformation is necessary for substrate binding in GTP-specific PCKs, as opposed to overall domain movement in ATP-specific PCKs.  相似文献   

20.
We previously observed secretion of active-form transglutaminase in Corynebacterium glutamicum by coexpressing the subtilisin-like protease SAM-P45 from Streptomyces albogriseolus to process the prodomain. However, the N-terminal amino acid sequence of the transglutaminase differed from that of the native Streptoverticillium mobaraense enzyme. In the present work we have used site-directed mutagenesis to generate an optimal SAM-P45 cleavage site in the C-terminal region of the prodomain. As a result, native-type transglutaminase was secreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号