首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文给出了分数阶积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数阶积分微分方程近拟转化为一个涉及未知函数及其n阶导数的线性方程组.数值例子表明该方法的有效性.  相似文献   

2.
本文利用Legendre多项式求解一类变分数阶微分方程.结合Legendre多项式,给出三种不同类型的微分算子矩阵.通过微分算子矩阵,将原方程转化一系列矩阵的乘积.最后离散变量,将矩阵的乘积转化为代数方程组,通过求解方程组,从而得到原方程的数值解.数值算例验证了本方法的高度可行性和准确性.  相似文献   

3.
根据多项式插值理论,可以通过构造相应的插值多项式来逼近未知的目标函数,再进一步求一阶导数,从而得到该目标函数的一阶数值微分公式.对于此数值微分公式,探讨基于前向差分的未知目标函数的多点一阶微分近似公式;即,等间距情况下的二至十六个数据点的前向差分公式.计算机数值实验进一步验证与表明,该用于未知目标函数一阶数值微分的多点公式可以取得较高的计算精度.  相似文献   

4.
基于Shifted Legendre多项式研究非线性年龄结构种群模型的数值解问题.定义了在区间[0,A]×[0,T]上函数的Shifted Legendre逼近多项式,通过Shifted Legendre算子矩阵结合Tau方法,把求解非线性年龄结构种群模型的数值解问题转化成非线性代数方程的求解问题.数值算例的结果显示该算法有效.  相似文献   

5.
研究时间分数阶扩散方程,结合时间方向的有限差分格式和空间方向的Legendre Collocation谱方法,构造了一个高阶稳定数值格式.数值算例表明该格式是无条件稳定和长时间稳定的,其收敛阶为O(Δt3-α+N-m),其中Δt,N和m分别是时间步长,空间多项式阶数以及精确解的正则度.  相似文献   

6.
Legendre小波函数被用于逼近非线性Volterra积分微分方程组的解,方法是基于Legendre小波的性质构建相应的积分算子矩阵,进而将原问题转化为关于未知解系数的线性方程组,通过求解该方程组,即得原问题的数值解.数值结果表明所述方法对于求解此类问题是行之有效的.  相似文献   

7.
研究时间Caputo分数阶对流扩散方程的高效高阶数值方法.对于给定的时间分数阶偏微分方程,在时间和空间方向分别采用基于移位广义Jacobi函数为基底和移位Chebyshev多项式运算矩阵的谱配置法进行数值求解.这样得到的数值解可以很好地逼近一类在时间方向非光滑的方程解.最后利用一些数值例子来说明该数值方法的有效性和准确性.  相似文献   

8.
借助于二维Block-Pulse函数求解分数阶泊松方程的数值解,并讨论了Dirichlet边界条件,方法是基于Block-Pulse函数的定义及性质,并结合相应的分数阶微分算子矩阵将原问题转化为含有未知变量的代数方程组,进而离散未知变量,求得原问题的数值解.而且还对所提方法进行了误差分析,最后给出的数值算例也验证了所提算法的有效性及可行性.  相似文献   

9.
提出了一种新的求解第二类线性Volterra型积分方程的Chebyshev谱配置方法.该方法分别对方程中积分部分的核函数和未知函数在Chebyshev-Gauss-Lobatto点上进行插值,通过Chebyshev-Legendre变换,把插值多项式表示成Legendre级数形式,从而将积分转换为内积的形式,再利用Legendre多项式的正交性进行计算.利用Chebyshev插值算子在不带权范数意义下的逼近结果,对该方法在理论上给出了L∞范数意义下的误差估计,并通过数值算例验证了算法的有效性和理论分析的正确性.  相似文献   

10.
考虑终值数据条件下一维空间-时间分数阶变系数对流扩散方程中同时确定空间微分阶数与时间微分阶数的反问题.基于对空间-时间分数阶导数的离散,给出求解正问题的一个隐式差分格式,通过对系数矩阵谱半径的估计,证明差分格式的无条件稳定性和收敛性.联合最佳摄动量算法和同伦方法引入同伦正则化算法,应用一种单调下降的Sigmoid型传输函数作为同伦参数,对所提微分阶数反问题进行精确数据与扰动数据情形下的数值反演.结果表明同伦正则化算法对于空间-时问分数阶反常扩散的参数反演问题是有效的.  相似文献   

11.
In this article, a general formulation for the fractional-order Legendre functions (FLFs) is constructed to obtain the solution of the fractional-order differential equations. Fractional calculus has been used to model physical and engineering processes that are found to be best described by fractional differential equations. Therefore, an efficient and reliable technique for the solution of them is too important. For the concept of fractional derivative we will adopt Caputo’s definition by using Riemann–Liouville fractional integral operator. Our main aim is to generalize the new orthogonal functions based on Legendre polynomials to the fractional calculus. Also a general formulation for FLFs fractional derivatives and product operational matrices is driven. These matrices together with the Tau method are then utilized to reduce the solution of this problem to the solution of a system of algebraic equations. The method is applied to solve linear and nonlinear fractional differential equations. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.  相似文献   

12.
In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.  相似文献   

13.
In this article, we develop a direct solution technique for solving multi-order fractional differential equations (FDEs) with variable coefficients using a quadrature shifted Legendre tau (Q-SLT) method. The spatial approximation is based on shifted Legendre polynomials. A new formula expressing explicitly any fractional-order derivatives of shifted Legendre polynomials of any degree in terms of shifted Legendre polynomials themselves is proved. Extension of the tau method for FDEs with variable coefficients is treated using the shifted Legendre–Gauss–Lobatto quadrature. Numerical results are given to confirm the reliability of the proposed method for some FDEs with variable coefficients.  相似文献   

14.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
杨洪福  张启敏 《数学杂志》2016,36(5):1083-1090
本文研究了一类与年龄相关的随机分数阶种群动态系统.利用不动点定理、随机分析和算子半群理论,讨论了与年龄相关的随机分数阶种群系统温和解的存在性、唯一性.本文是随机整数阶种群系统的推广.  相似文献   

16.
In this paper, shifted Legendre polynomials will be used for constructing the numerical solution for a class of multiterm variable‐order fractional differential equations. In the proposed method, the shifted Legendre operational matrix of the fractional variable‐order derivatives will be investigated. The fundamental problem is reduced to an algebraic system of equations using the constructed matrix and the collocation technique, which can be solved numerically. The error estimate of the proposed method is investigated. Some numerical examples are presented to prove the applicability, generality, and accuracy of the suggested method.  相似文献   

17.
In this paper, a numerical method is presented to obtain and analyze the behavior of numerical solutions of distributed order fractional differential equations of the general form in the time domain with the Caputo fractional derivative. The suggested method is based on the Müntz–Legendre wavelet approximation. We derive a new operational vector for the Riemann–Liouville fractional integral of the Müntz–Legendre wavelets by using the Laplace transform method. Applying this operational vector and collocation method in our approach, the problem can be reduced to a system of linear and nonlinear algebraic equations. The arising system can be solved by the Newton method. Discussion on the error bound and convergence analysis for the proposed method is presented. Finally, seven test problems are considered to compare our results with other well‐known methods used for solving these problems. The results in the tabulated tables highlighted that the proposed method is an efficient mathematical tool for analyzing distributed order fractional differential equations of the general form.  相似文献   

18.
In this study, a new numerical method for the solution of the linear and nonlinear distributed fractional differential equations is introduced. The fractional derivative is described in the Caputo sense. The suggested framework is based upon Legendre wavelets approximations. For the first time, an exact formula for the Riemann–Liouville fractional integral operator for the Legendre wavelets is derived. We then use this formula and the properties of Legendre wavelets to reduce the given problem into a system of algebraic equations. Several illustrative examples are included to observe the validity, effectiveness and accuracy of the present numerical method.  相似文献   

19.
In this paper, a numerical solution of fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric media will be discussed. For the solution of FPDEs, we developed a numerical collocation method using an algorithm based on two‐dimensional shifted Legendre polynomials approximation, which is proposed for electromagnetic waves in dielectric media. By implementing the partial Riemann–Liouville fractional derivative operators, two‐dimensional shifted Legendre polynomials approximation and its operational matrix along with collocation method are used to convert FPDEs first into weakly singular fractional partial integro‐differential equations and then converted weakly singular fractional partial integro‐differential equations into system of algebraic equation. Some results concerning the convergence analysis and error analysis are obtained. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Multi-term fractional differential equations have been used to simulate fractional-order control system. It has been demonstrated the necessity of the such controllers for the more efficient control of fractionalorder dynamical system. In this paper, the multi-term fractional ordinary differential equations are transferred into equivalent a system of equations. The existence and uniqueness of the new system are proved. A fractional order difference approximation is constructed by a decoupled technique and fractional-order numerical techniques. The consistence, convergence and stability of the numerical approximation are proved. Finally, some numerical results are presented to demonstrate that the numerical approximation is a computationally efficient method. The new method can be applied to solve the fractional-order control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号