首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究固溶温度和时效温度对Ti62421s高温钛合金显微组织、相成分和常温拉伸性能的影响。结果表明:在两相区进行固溶处理时,随着固溶温度的升高,合金组织中的α相减少,β转变组织(βt)增多,当固溶温度进入β相区后为篮网状β转变组织;随着时效温度的升高,α相长大;随着固溶温度和时效温度的升高,β转变组织中只有Al含量升高,其他合金元素的含量都下降;随着固溶温度的升高,强度和断面收缩率先升高后迅速降低,伸长率逐渐下降;经(980℃,1h,AC)+(550℃,8h,AC)热处理后,合金可以获得较好的综合性能,抗拉强度达1077.04MPa,伸长率达13.6%,断面收缩率为26.02%。  相似文献   

2.
研究了固溶处理后不同时效温度对Ti-5Al-2V-3Fe-0.2O合金热轧板材显微组织与力学性能的影响。结果表明:热轧态板材组织主要由α相和β相组成;固溶处理后,组织中出现了α相向β相转变现象,由初生α相及亚稳态β转变组织组成;通过时效处理,亚稳态β转变组织部分分解,析出次生α相并形成晶间β相,随着时效温度从450℃升高到550℃,亚稳态β转变相进一步减少,次生α相增多并长大,初生α相逐渐粗化;与热轧态相比,固溶时效处理后板材抗拉强度和断后伸长率均提高,并且随着时效温度升高,抗拉强度逐渐降低,伸长率逐渐提高;940℃×15min/AC+500℃×6 h/AC热处理后的板材强度和伸长率分别达到1260 MPa、8.5%,具有较佳的综合性能。  相似文献   

3.
采用OM、SEM和XRD等方法研究了固溶时效热处理对近β型钛合金(Ti-3Al-6Mo-2Fe-Zr)显微组织、力学性能及耐腐蚀性能的影响。结果表明,随着固溶温度的升高,初生α相的含量逐渐降低,经930 ℃固溶处理后,合金为单一β相。固溶温度在830 ℃以下时,随着固溶温度的升高,初生α相逐渐转变为β相,第二相强化作用减弱,合金强度逐渐降低,塑性逐渐提高,断裂方式为微孔聚集型;固溶温度在830 ℃以上时,随着固溶温度的升高,β相晶粒逐渐粗化,合金强度降低,塑性下降,断裂方式由微孔聚集型断裂向解理断裂转变。随着固溶温度从780 ℃升高至930 ℃,初生α相的含量降低,β/α相界逐渐减少,耐腐蚀性能提升。经780 ℃固溶1 h(水冷),500 ℃ 时效6 h(随炉冷却)处理后,细小针状的次生α相于亚稳β相中沉淀析出,合金强度显著提高,但塑性下降。  相似文献   

4.
采用BLT-C1000型激光立体成形设备制备了沉积态的TB18钛合金,然后采用OM、SEM和拉伸试验机等方法研究了不同热处理工艺对TB18钛合金显微组织和力学性能的影响。结果表明,沉积态试验合金的宏观组织以长条形β晶粒为主,晶内由亚稳β相和针状次生α相组成,且存在贯穿β晶粒的沉积层线。随着直接时效温度的升高,原始β晶粒形状变化不大,内部次生α相厚度增加,在形貌上次生α相从针状向片状转变。直接时效温度高于550 ℃时,沉积层线消失,直接固溶温度高于830 ℃时显微组织以全β晶粒组成。固溶+时效处理后,微观组织以纵横交错的细层片状α相为主。随着直接时效温度的升高,抗拉强度和屈服强度降低,伸长率增加。固溶+时效后析出次生α相,抗拉强度和屈服强度显著增加,同时伸长率下降。综合考虑,实际生产中沉积态的TB18钛合金的最佳热处理工艺为直接时效500 ℃×4 h,此时强度和伸长率均高于指标要求。  相似文献   

5.
研究了热处理工艺对原始组织为粗大β晶粒+少量细小α晶粒的紧固件用TB2钛合金棒材组织与力学性能的影响。结果表明:随着固溶温度的升高,棒材组织中α相含量逐渐减少,β晶粒尺寸明显增大,经780℃固溶后强度和塑性匹配最好;固溶+时效处理时,随着时效温度的升高,棒材组织中析出的次生α相体积分数先增加后减少,且棒材强度先升高后降低;经固溶+预拉伸变形+时效处理后,棒材组织中晶粒有一定细化,次生片状α相含量增多,抗拉强度较固溶后直接时效提高了近10%。  相似文献   

6.
采用正交试验研究不同热处理工艺对Ti55531合金显微组织和力学性能的影响。结果表明,显著影响合金显微组织和力学性能的因素依次是固溶温度、时效温度、时效时间。随固溶温度的升高,初生α相含量明显减少,α相的等轴性表现较好且分布更加均匀,抗拉强度逐渐增加,伸长率下降;随时效温度的升高,次生α相开始增加、长大,组织向双态组织转变,使得抗拉强度下降,伸长率增加。其合理的"固溶+时效"热处理工艺为"820℃×2h固溶,空冷+580℃×10h时效,空冷",抗拉强度为1 370MPa,伸长率为8.5%。  相似文献   

7.
对Ti-38644钛合金ϕ68 mm棒材进行了不同温度、保温时间和冷却方式的热处理试验,研究了不同热处理制度对合金棒材显微组织和力学性能的影响。结果表明,随着固溶温度的升高,析出α相含量增大,强度明显下降,塑性提高;随着时效温度的升高,析出α相粗化,强度降低,伸长率随之升高,强化效果降低;随着时效保温时间的延长,析出α相进一步增加,强度呈先增加后降低的趋势,塑性变化与之相反;固溶冷却方式对合金组织性能的影响也很明显,随着冷却速率的加快,获得的β晶粒比较细小,时效后的强度随之明显增高,同时伸长率下降也很明显。为了获得良好的强塑性匹配,最佳的固溶时效热处理工艺为810 ℃×1 h(油冷)+510 ℃×8 h(空冷)。  相似文献   

8.
研究了不同固溶温度与冷却方式对Ti-4.5Al-2.5V-1.5Fe-0.25O热轧板材显微组织及力学性能的影响。结果表明:热轧合金板材组织主要由α相和β相组成,随着固溶温度从910℃升高到1000℃,板材中α相含量减少而β相含量逐渐增多,初生等轴α相向针状β相转变进而向全片层状β相转变;空冷冷却速度较慢,高温组织有很大一部分发生分解,而水冷冷却抑制高温析出相析出及分解,形成片层状β转变组织;随着固溶温度的升高,合金板材抗拉强度先增加后减小,伸长率降低;940℃固溶后水冷处理的合金板材力学性能最优:抗拉强度1264 MPa,伸长率11.4%。  相似文献   

9.
研究了不同固溶处理温度对冷轧Ti-4.5Al-2.5V-1.5Fe-0.25O合金显微组织与力学性能的影响。结果表明,合金主要由α相和β相组成,随着固溶处理温度的升高,合金中β相含量逐渐增多,显微组织出现了由初生等轴α相向β转变组织转变、进而向全片层状β相转变组织和晶间α相的转变过程;合金的抗拉强度和硬度呈增加趋势、伸长率呈降低趋势,合金的力学性能变化趋势与固溶处理温度升高过程中显微组织的转变密切相关。  相似文献   

10.
为了提高TC8-1钛合金的性能,对TC8-1钛合金热处理制度进行研究。通过采用不同固溶温度和时效温度处理,分析了热处理制度对TC8-1钛合金显微组织和力学性能的影响。结果表明:随着固溶温度的升高,合金中等轴初生α相含量由65%下降至25%,β转变组织明显粗化,合金由等轴组织转变为双态组织,合金的室温强度降低,而塑性略有提高;随着时效温度的升高,合金中等轴初生α相含量无明显变化,合金的抗拉强度略有降低,而塑性无明显变化。经930℃×2 h,空冷(AC)+580℃×1 h,空冷(AC)热处理后,TC8-1钛合金可获得强度与塑性的较佳匹配。  相似文献   

11.
研究了TC4钛合金棒材经650和700℃固溶处理及时效处理后的组织和性能变化。结果表明:对热加工态的TC4钛合金进行650℃的固溶热处理,材料的显微组织和拉伸性能变化不大。经过700℃固溶热处理,TC4钛合金棒材强度明显降低,屈服强度相对于热加工态降低77 MPa,且屈/强比明显低于普通退火。时效热处理后,合金的强度显著提高,400℃时效后抗拉强度达到1020 MPa,相对于热加工态提高53 MPa。显微组织分析表明,热加工后的TC4棒材显微组织由初生α相、次生α相以及残余β相组成。热处理过程中,残余β相中针状α相的溶解与重新析出是影响合金拉伸性能变化的主要原因。  相似文献   

12.
采用光学显微镜和室温拉伸实验机研究退火温度对SP-700钛合金板材显微组织和力学性能的影响。结果表明:退火温度低于760℃时,显微组织没有显著变化;退火温度为780℃时,显微组织由等轴状以及条状α相和β转变组织组成;退火温度为800~840℃时,显微组织由等轴α相和β转变组织构成;当退火温度升高至900℃时,显微组织由粗大的β相转变组织组成。室温拉伸实验表明:退火温度低于800℃时,抗拉强度变化不大,屈服强度和伸长率逐渐升高;当退火温度为800~840℃时,抗拉强度和屈服强度逐渐升高,伸长率逐渐下降;在740~820℃退火,纵横向抗拉强度和屈服强度的差异随着退火温度的升高而减小,纵横向伸长率差异先减小后增大。  相似文献   

13.
采用OM、XRD和SEM等方法对Ti-2.3Cr-1.3Fe合金在固溶+时效和直接时效后的组织和室温力学性能进行了研究。结果表明:固溶+时效后合金组织由β相和α相组成,强度随时效温度升高而降低,抗拉强度最高为888 MPa,与TC4合金典型热处理后的强度相当,但此时伸长率仅为4.0%;直接时效后合金组织亦由β相和α相组成,强度随直接时效温度升高而降低,塑性变化不大,但伸长率均高于23.0%,合金抗拉强度与轧态和固溶+时效态相比分别降低9.5%和18.5%。  相似文献   

14.
采用扫描电子显微镜(SEM)、电子背散射衍射分析(EBSD)、X射线衍射分析(XRD)等手段,对锻造态和固溶时效态Ti合金的显微组织、物相组成和力学性能进行了分析。结果表明,锻造态的Ti合金中主要含有α相和β相,而固溶态Ti合金由单一β相组成;随着时效温度的升高,Ti合金中的次生α相的体积分数减小,而宽度增大;时效处理后Ti合金的强度比固溶态有所增加,而塑性有所降低;随着时效温度的升高合金的抗拉强度和屈服强度减小,而断后伸长率和断面收缩率增加。  相似文献   

15.
通过改变固溶温度、固溶后的冷却方式和时效温度,研究了热处理制度对TA19钛合金微观组织和力学性能的影响。研究表明,随着固溶温度的升高,初生α相含量减少,使得伸长率和断面收缩率减小;而升高固溶温度使得β相中析出的细小次生α相增多,从而使室温抗拉强度增大。固溶处理后采用水冷时,由于从β相中析出大量细小弥散的次生α相,室温抗拉强度较大,但伸长率和断面收缩率较小。时效温度对微观组织和力学性能影响较小。  相似文献   

16.
通过拉伸试验,对经过β相区两镦两拔锻造的TA10钛合金棒材不同温度(600~750℃)退火后的力学性能和显微组织进行研究。结果表明:随着退火温度的升高,TA10钛合金的规定塑性延伸强度和抗拉强度下降,伸长率和断面收缩率升高;显微组织由网篮组织逐渐破碎,相同取向的片状α组织随温度升高偏聚在一起,形成长而平直的集束,为魏氏组织;热处理温度为700℃时棒材的规定塑性延伸强度为607 MPa,抗拉强度为687 MPa,伸长率为22%,强度和塑性达到较好的匹配。  相似文献   

17.
研究了不同热处理工艺对Ti-62222s钛合金棒材显微组织和力学性能的影响。结果表明:Ti-62222s合金在两相区经过普通退火处理后,随着退火温度的升高,初生α相尺寸略有增加,β转变组织增多,次生α片层厚度增加,具有较好的塑性;而经过两相区固溶+时效处理得到双态组织,通过控制固溶温度以及时效温度来调整初生α相含量以及次生α片层厚度,以改善其强度、硬度和塑性。采用880℃/1 h/AC+540℃/8 h/AC两相区固溶+时效的热处理工艺,可实现合金强度-塑性-硬度的较好匹配,获得优良的综合性能。  相似文献   

18.
通过拉伸试验,对经过β相区两镦两拔锻造的TA10钛合金棒材不同温度(600~750 ℃)退火后的力学性能和显微组织进行研究。结果表明:随着退火温度的升高,TA10钛合金的屈服强度和抗拉强度下降,伸长率和断面收缩率升高;显微组织由网篮组织逐渐破碎,相同取向的片状α组织随温度升高偏聚在一起,形成长而平直的集束,为魏氏组织;热处理温度为700 ℃时棒材的屈服强度为607 MPa,抗拉强度为687 MPa,伸长率为22%,强度和塑性达到较好的匹配。  相似文献   

19.
研究了双重时效处理β21S钛合金棒材的显微组织及性能。结果表明,β21S钛合金时效时首先在晶粒内部析出α相,首次时效处理的温度及时间对析出相的影响较大。540 ℃×20 min和550 ℃×10 min首次时效处理获得了较为均匀和数量相当的析出相,首次时效后再进行510 ℃常规时效,试样的抗拉强度未明显降低,但伸长率比单次固溶时效提高2%以上。相同双重时效制度下,固溶温度升高,抗拉强度增大,伸长率减小。双重时效处理对剪切性能的影响不大。  相似文献   

20.
选取TA10钛合金棒材,对其固溶时效热处理,随后使用光学显微镜、扫描电子显微镜研究其组织与力学性能的关系,结果表明:合金经固溶处理后,金相组织由初生α相和β转变组织组成,其中β转变组织由细小的次生α′相和残余β组成,此时组织为典型的双态组织,经时效处理后,会形成细小的次生αs相,时效温度越高αs相越细小;合金经固溶处理后,其抗拉强度为510 MPa,屈服强度为395 MPa,延伸率为23%,时效处理,使其强度增大,塑性降低,随着时效温度升高,趋势相同;仅经固溶处理后,合金的拉伸断口形貌是以等轴状的韧窝为主,断口形貌主要由韧窝构成,当合金再经时效处理后,断口微观形貌中会出现二次裂纹,当时效温度继续增大,断口微观形貌中出现明显的撕裂棱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号