首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以氧化钙为原料,在非水体系下采用二氧化碳碳化法制备球霰石型纳米碳酸钙椭球形颗粒。探究了碳化温度、氧化钙用量、二氧化碳流速和溶剂种类对纳米碳酸钙晶型、颗粒形貌的影响,并优化了工艺条件。采用XRD、SEM、FT-IR和TEM等对产物进行表征,并探讨了合成机理。结果表明:4个因素对纳米碳酸钙的形貌均有影响,碳化温度对晶型影响较大。以甲醇作为溶剂和模板,当碳化温度为5 ℃,氧化钙用量为2.8 g(每100 mL甲醇),二氧化碳流速为100 mL/min时,可制得球霰石型纳米碳酸钙椭球形颗粒。  相似文献   

2.
用于RTV硅酮胶的纳米碳酸钙的研制   总被引:1,自引:0,他引:1  
刘亚雄 《广东化工》2006,33(1):58-59,71
讨论了纳米碳酸钙对TRV(室温硫化)硅酮密封胶的流变性的影响。通过实验表明具有良好流变性的纳米碳酸钙的工艺是:控制纳米碳酸钙的比表面为22~30m2/g,用脂肪酸及其酯配合处理,吸油值控制在30~36mL/100g时,水分在0.55%以下。生成的纳米碳酸钙作为高档填料和流变助剂,应用于涂料、密封胶、粘合剂具有良好的触变性。  相似文献   

3.
童孟良 《无机盐工业》2012,44(12):26-27,35
研究了以白云石为原料经过煅烧、消化、二次碳化、过滤、洗涤、干燥制备碳酸钙纳米棒的工艺。用扫描电镜(SEM)、X射线衍射(XRD)对合成的样品进行表征。重点考查了二次碳化工序反应温度、氢氧化钙质量浓度、晶型控制剂用量及添加的分散剂种类对产品粒径的影响。结果表明,在二次碳化工序中,在碳化温度为20 ℃、氢氧化钙质量分数为6%条件下,加入2%(质量分数)晶型控制剂和聚乙烯醇分散剂,可以制得平均直径约150 nm、平均长度约1 μm、平均长径比为6~8的碳酸钙纳米棒。  相似文献   

4.
纳米碳酸钙的湿法表面改性   总被引:8,自引:0,他引:8  
向纳米碳酸钙悬浮液中直接加入硬脂酸钠,制得改性纳米碳酸钙粉体,确定了改性剂硬脂酸钠的最佳用量为3 g/100 g CaCO3、最佳改性时间(20-30 min)、最佳改性温度(70-80℃)。用红外光谱、扫描电镜等分析手段进行了验证,实验表明,每100 g改性纳米碳酸钙的吸油值降至35.2 g,而活化度增至90.2%,大大提高了碳酸钙的活性。  相似文献   

5.
以电石渣为原料制备纳米碳酸钙,考察了水、氯化铵、添加剂用量、氨水用量和碳化温度对纳米碳酸钙产品的影响,用XRD、BET和SEM等分析手段进行了产品质量表征.SEM和XRD图表明,低温碳化有利于纳米碳酸钙的生成,且形成比较规则的立方体晶型,纳米碳酸钙产品尺度为30~80nm.  相似文献   

6.
以电石渣为原料制备纳米碳酸钙,考察了水、氯化铵、添加剂用量、氨水用量和碳化温度对纳米碳酸钙产品的影响,用XRD、BET和SEM等分析手段进行了产品质量表征.SEM和XRD图表明,低温碳化有利于纳米碳酸钙的生成,且形成比较规则的立方体晶型,纳米碳酸钙产品尺度为30~80nm.  相似文献   

7.
景亭 《无机盐工业》2020,52(4):57-60
采用碳化法合成纳米碳酸钙,在反应过程中,调整反应起始温度合成不同晶型大小的纳米碳酸钙。通过透射电镜(TEM)、激光粒度仪对碳酸钙的物相、形貌、粒度进行分析,将改性纳米碳酸钙应用于硅酮胶基料制备及挤出性研究,分析改性纳米碳酸钙的颗粒大小、分散性、流变性能及表面改性剂对挤出性的影响。结果表明:粒径介于50~90 nm,屈服值介于66.4~148.9 Pa,黏度介于0.5~0.75 mPa·s,硬脂酸钠与LH-2、LH-3两种包覆剂进行复配改性的纳米碳酸钙用于硅酮胶基料具有较好的挤出性能。  相似文献   

8.
研究了以D-葡萄糖酸钠作为晶形控制剂、石灰乳液碳化法制备类球状纳米碳酸钙的工艺条件,以及十二烷基磺酸钠为改性剂的湿法改性工艺条件。XRD,TEM等表征结果表明:在温度50℃、搅拌转速800 r/min、晶形控制剂质量分数1.5%、Ca(OH)2初始质量分数7%、CO2气体流速60 mL/min时,制备的纳米碳酸钙样品属于方解石型六方晶系,形貌类似球状,粒径均匀(50~100 nm)。吸油量测定结果表明:在改性剂质量分数3.5%、改性温度70℃、改性时间50 min时,改性所得样品吸油量(以100 g计)约44 mL,符合国家工业碳酸钙行业标准(GB/T 19281—2003《碳酸钙分析方法》)一等品的要求[吸油量(以100 g计)小于60 mL]。  相似文献   

9.
改性纳米碳酸钙粉体的制备及其耐酸性   总被引:5,自引:0,他引:5  
丁士育  金鑫  陈欣 《硅酸盐学报》2005,33(3):350-353
公共沸蒸馏脱水后的纳米碳酸钙-正丁醇悬浮液中直接加入硬脂酸,制备了改性纳米碳酸钙粉体,确定了改性剂硬脂酸的最佳用量为纳米碳酸钙质量的3%。每100g改性纳米碳酸钙的吸油值为49.4g,活化度高达99.9%,比表面积为30.32m^2/g。用透射电镜,红外光谱分析,BET(Brunauer-Emmett-Teller)法等对改性纳米碳酸钙进行了表征。研究了改性纳米碳酸钙的耐酸的和耐酸性原因.即粒子表面形成的有机包敷层,使碳酸钙产生了一定的耐酸性能。  相似文献   

10.
采用传统的鼓泡碳化法,用50℃热水快速消化石灰,精制石灰乳冷却到20℃以下碳化,制备纳米碳酸钙。研究了碳化过程中粘度和pH的变化,以及陈化和添加晶形控制剂对纳米碳酸钙晶形的影响。通过陈化一二次碳化法制备了晶形比较完整的纳米碳酸钙,从而降低了纳米碳酸钙的吸油量。通过添加不同的晶形控制剂,可以制备立方体形、立方柱形、棒状和菱形纳米碳酸钙。  相似文献   

11.
纳米碳酸钙的表面改性   总被引:7,自引:1,他引:6  
陆宏志 《广东化工》2006,33(1):25-27
采用钛酸酯偶联剂对纳米碳酸钙进行表面改性,并对改性粉体进行了表征;钛酸酯偶联剂湿法改性纳米碳酸钙的最佳条件为:钛酸酯偶联剂的用量为3%,改性时间为1h,粉体浓度为20%,改性温度为80℃;改性后纳米碳酸钙粉体的吸油值为25.40g DOP/100g CaCO3,活化度为1,表明改性后的纳米碳酸钙已经由亲水性变为疏水性。  相似文献   

12.
科技简讯     
《无机盐工业》2005,37(6):60-60
改性纳米碳酸钙粉体的制备及其耐酸性在共沸蒸馏脱水后的纳米碳酸钙-正丁醇悬浮液中直接加入硬脂酸,制备了改性纳米碳酸钙粉体,确定了改性剂硬脂酸的最佳用量为纳米碳酸钙质量的3%。改性纳米碳酸钙的吸油值为每100g49.4g,活化度高达99.9%,比表面积为30.32m2/g。用透射电镜、红外光谱分析、BET法等对改性纳米碳酸钙进行了表征。研究了改性纳米碳酸钙的耐酸性原因,即粒子表面形成的有机包敷层,使碳酸钙产生了一定的耐酸性能。改性后纳米碳酸钙粒子的分散性和分散程度得到了提高,绝大部分纳米碳酸钙粒子处于单分散状态,有效地避免了二次粒子…  相似文献   

13.
一种针状纳米碳酸钙的制备方法   总被引:2,自引:0,他引:2  
用石灰乳液碳酸化法制备出针状纳米碳酸钙微粒,讨论了碳化温度和结晶导向剂用量等因素对纳米碳酸钙粒径和形貌的影响。结果表明:结晶导向剂用量为1%~3%(质量分数),温度为14℃,氢氧化钙浆液浓度为8%~12%(氢氧化钙占浆液的质量分数),CO2气体浓度为40%~60%(体积分数),搅拌速度为200~300 r/m in时能制备出长径比大、粒径分布均匀、分散性好的产品;并采用TEM,XRD对其结构进行了表征。  相似文献   

14.
以磷石膏(PG)为原料,在气(CO2)-液(NH3·H2O)-固(PG)三相体系中反应结晶制备纳米碳酸钙。研究了温度、CO2流量和反应时间对碳酸钙粒径分布的影响。结果表明,当CO2流量为138~251mL/min时,在相应的温度下,可以得到平均粒径为86~104nm的PG衍生纳米CaCO3。研究表明,碳酸钙的粒径受温度、CO2流量和反应时间的相互影响。随着温度的升高和反应时间的严格控制,较低的CO2流量有利于纳米CaCO3颗粒的形成。此外,PG衍生的纳米CaO经10次煅烧-碳化循环后仍保持0. 27g/g的CO2吸附能力,与商用纳米CaO相同。  相似文献   

15.
以硬脂酸、油酸及十二酸为改性剂,利用湿法活化工艺对纳米碳酸钙进行表面改性,并将其填充到酚醛树脂中。利用正交实验考察了改性时间、改性温度及改性剂用量对改性效果的影响,并确定了不同改性剂改性纳米碳酸钙的最佳条件。结果表明,油酸改性纳米碳酸钙的效果最好,其最佳改性条件为:改性时间30min,改性温度75℃,改性剂用量为纳米碳酸钙用量的4%(wt.)纳米碳酸钙经油酸改性后吸油值降低至22,比未改性纳米碳酸钙降低了71.05%,活化度接近100%。将改性纳米碳酸钙分散到酚醛树脂中,使它的耐水性能提高3倍以上。  相似文献   

16.
采用自制高活性度石灰和传统工业立窑煅烧石灰两种原料来合成纳米碳酸钙,对碳化过程中悬浮体系的pH值和粘度的变化规律及碳酸钙产品的质量进行了比较分析。结果表明:同采用传统工业立窑煅烧石灰为原料相比,以高活性度石灰为原料时碳化体系具有相对更短的碳化反应后期,碳化过程中悬浮体系的峰值粘度相对较大,且峰值粘度出现的时间提前了约3min;采用高活性度石灰为原料所制得碳酸钙粒子粒度细小(15~30nm),白度高(98.5),分散性好。  相似文献   

17.
苏承炎 《广东化工》2012,39(7):56-57
石灰石经煅烧、消化、碳化可制取纳米碳酸钙产品,文章考察了碳化前的工艺条件对制备的纳米碳酸钙产品性能的影响,实验结果表明:采用电加热方式煅烧石灰石能过提高消化反应活性以及石灰乳的产率,并能提高碳化得到的纳米碳酸钙产品的比表面积,降低吸油值,提高产品的白度;采用高温消化以及增加石灰乳的陈化时间的方法,也能提高石灰乳的产率以及纳米碳酸钙产品的比表面积,并且在消化时加入药剂H能过缩短陈化时间。  相似文献   

18.
采用原位聚合的方法制备了PVC/纳米碳酸钙复合树脂,考察了纳米碳酸钙加入量对聚合体系的影响,以及纳米碳酸钙加入量、加料工艺、复合分散剂配比对PVC/纳米碳酸钙复合树脂粒度分布的影响。结果表明:最佳工艺条件为纳米碳酸钙用量为4份(以VCM用量为100份计),采用倒加料工艺,复合分散剂m(HPMC60)∶m(KH-20)=1∶3。  相似文献   

19.
《化工矿物与加工》2003,32(5):42-42
该工艺是将石灰石经燃烧生成CaO和烟道气 ,CaO放人消化釜中加水消化得到Ca(OH) 2 乳浊液 ,经粗滤、精制得到Ca(OH) 2 精乳液送碳化釜 ,通入精制的窑气进行碳化。通过Ca(OH) 2 悬浮液的温度、窑气的流量等控制气液传递 ,有效地控制碳酸钙晶核的成核速率 ;在碳化至形成一定的晶核数后 ,由晶核形成控制转化为晶体生长控制 ,此时加入晶形调节剂控制各晶面的生长速率 ,从而达到形貌可控 ;继续碳化至终点 ,加入分散剂 ,调节粒子表面电荷 ,使其得到均匀分散的立方形碳酸钙纳米颗粒。然后均匀包覆一层树脂酸 ,合成出油墨用纳米碳酸钙 ,其粒径…  相似文献   

20.
利用加压碳化体系制备粒径均一、高分散性纳米碳酸钙材料。考察氢氧化钙浓度、表面活性剂添加量、反应温度、CO2压力对制备纳米CaCO3粒子尺寸和分散程度的影响,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、Zeta电位和傅立叶变换红外光谱(FT-IR)对制备的纳米碳酸钙粒子进行表征。结果表明,最优加压碳化反应条件是Ca(OH)2质量浓度为2%、表面活性剂添加量为3%(占碳酸钙理论产量的百分比)、反应温度为40℃、CO2压力为6 MPa,所得立方形碳酸钙平均粒径为117 nm,晶型为方解石型碳酸钙。碳化反应加入表面活性剂十六烷基三甲基溴化铵(CTAB)使CaCO3表面形成的正电荷增大至+37.7 mV并高于标准值30 mV,表明制备的CaCO3产品具有良好的分散性且稳定。通过FT-IR和Zeta电位对CTAB改性前后CaCO3纳米粒子进行表征,探讨了CTAB对合成纳米CaCO3分散性的影响机理,为纳米碳酸钙制备提供了一种新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号