首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 59 毫秒
1.
为辨识与测度不同影响因子对PM_(2.5)浓度变化的作用机理,以2015年北京PM_(2.5)浓度时间演变模式为基础,建立PM_(2.5)与各大气污染物(PM_(10)、SO_2、NO_2、CO、O_3)及气象因素(日均温度、风力、风向)的GAM模型,探索不同因素对PM_(2.5)浓度变化的影响作用。结果显示:(1)北京PM_(2.5)浓度具有夏秋季低、春冬季高的时间分布特点;(2)2015年北京PM_(2.5)浓度变化与PM_(10)、SO_2、NO_2、CO大体呈线性正相关,且正相关程度由强到弱为:COPM_(10)SO_2NO_2,而与O_3、温度和风因子的关系更为复杂;(3)GAM模型的拟合优度R~2为0.725,线性回归模型的拟合优度R~2为0.519,相比较,GAM模型对PM_(2.5)浓度变化的解释度提高了20.6%。研究表明,GAM模型对于建立PM_(2.5)浓度变化与影响因素间综合性复杂关系更灵活、更可靠,优于线性回归模型。  相似文献   

2.
对邯郸市2013年和2014年1、4、7、10月份的PM_(2.5)进行采样及成分分析,结果显示2013年和2014年的PM_(2.5)年均浓度分别为170.4和144.0μg·m~(-3),2014年较2013年下降了15.5%。各季度OC浓度冬季(31.7μg·m~(-3))秋季(24.4μg·m~(-3))春季(9.1μg·m~(-3))夏季(5.6μg·m~(-3)),SOC的排序为秋季(13.1μg·m~(-3))冬季(8.8μg·m~(-3))春季(2.4μg·m~(-3))夏季(2.0μg·m~(-3)),分别占OC的24.6%、34.6%、43.9%和27.7%。利用IMPROVE重构公式,得出散射系数年均值为524.9 Mm-1,春、夏、秋、冬季分别为328.4、333.9、564.8和872.6 Mm-1。硫酸铵是散射系数的主要贡献者,年均贡献率为33.9%,其次为硝酸铵(25.3%)、有机物(20.2%)、PM_(2.5)-10(15.4%)和土壤尘(5.7%)。  相似文献   

3.
为了探究太行山东麓煤矿区气溶胶中重金属元素的污染特征及来源,于2017年春、夏、秋、冬四季分别在峰峰矿区采集PM_(2.5)和PM_(10)样品,使用电感耦合等离子体质谱(ICP-MS)测试样品中的重金属元素,分析讨论PM_(2.5)和PM_(10)中重金属元素的污染特征。结果表明,峰峰矿区春、夏、秋、冬四个季节PM_(2.5)的平均质量浓度分别为84、108、107和174μg/m~3,春、夏、秋季PM_(10)质量浓度分别为204、177和179μg/m~3,均超过我国环境质量二级标准,表明矿区大气污染较为严重;PM_(2.5)/PM_(10)的比值夏秋季明显高于春季,这可能与夏秋季强烈的光化学反应生成大量二次粒子有关;峰峰矿区PM_(2.5)中Zn元素含量最高,Pb次之,其他元素含量由高到低依次为Mn、Cr、Cu、As、Mo、V、Sn、Ni、Cd、Co。PM_(10)中Zn元素含量最高,Mn次之,其他元素含量由高到低依次为Pb、Cr、Cu、V、As、Mo、Ni、Sn、Cd、Co。峰峰矿区PM_(2.5)和PM_(10)中Cd元素的富集系数超过100,严重富集,明显受到人为活动影响;Mo、Pb、Sn、Zn元素富集系数均超过了10,表明Mo、Pb、Sn、Zn等四种元素在峰峰矿区轻微富集,受到人为活动影响;Cu、As、Cr、Ni、V、Mn、Co元素的富集系数小于10,表明Cu、As、Cr、Ni、V、Mn、Co这七种元素主要来自于地壳。  相似文献   

4.
为探索邯郸地区PM2.5浓度长期变化特征及污染潜在源区,对邯郸2012年12月—2018年2月河北工程大学站点在线监测的PM2.5质量浓度进行统计分析,并结合HYSPLIT模型、潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)对PM2.5进行来源解析。结果表明:邯郸市2013—2017年PM2.5年均值为108.4、98.3、92.2、81.2、66.3 μg·m-3;整体呈逐年下降趋势;秋冬季污染最为严重,春、夏季次之;月均值呈单峰型分布,1月最高(167.4 μg·m-3),7月最低(59.2 μg·m-3)。后向轨迹结果显示,近地层大气污染气团输送路径以近距离轨迹为主,轨迹较短的路径占比在40%以上。除冬季外,近距离输送路径均存在螺旋转向,轨迹方向转为南向和东向路径;邯郸主要污染源区范围较大,其中河北中南部、河南北部、山西中南部、陕西北部、内蒙古南部地区的轨迹对邯郸PM2.5质量浓度贡献较大。  相似文献   

5.
2014年3月13日至4月20日在福建三明市利用PM_(2.5)中流量采样器采集大气中PM_(2.5)膜样品,测定了PM_(2.5)的质量浓度,并用热/光碳分析仪和离子色谱分析了其组分变化特征.结果表明,三明市观测期间PM_(2.5)的平均质量浓度为73.61±0.73μg/m~3,有机碳(OC)和元素碳(EC)的平均质量浓度分别为7.26±1.00和5.63±0.27μg/m~3,水溶性离子中SO_4~(2-)、NH_4~+、NO_3~-和Na~+的质量浓度分别为18.08±12.19、4.18±3.56、2.77±1.16和2.73±0.23μg/m~3,总和占总水溶性离子的87.76%.结合后向轨迹分析了福建三明市的污染物来源特征.该地区OC/EC的平均比值小于2,SOC(二次有机碳)生成量很少,主要以一次有机污染物为主,OC、EC与K~+的相关性分析表明OC、EC与K~+的来源相近,可以判断OC、EC绝大部分来源是生物质燃烧产生的污染物.在水溶性离子分析中,观测期间NO_3~-/SO_4~(2-)为0.159±0.02,表明三明市主要以固定源为主,机动车辆等移动源贡献较少.  相似文献   

6.
利用2004年以来东亚地区10个本底观测站大气φ(CO2)观测资料,分析了各站大气φ(CO2)的变化特征及其各站之间的差异,讨论了下垫面特征、源汇作用等对φ(CO2)变化的影响.结果表明:10个本底站大气月均φ(CO2)有明显的季节变化,高值多出现在冬春等寒冷季节,而低值则多出现在6—9月,属于北半球的夏季;大气φ(CO2)日变化趋势较为一致,15时(当地时间)前后达到全天最低,随后φ(CO2)升高,并在日落后继续积累,至清晨7时(当地时间)前后达到全天最高,之后φ(CO2)随着太阳辐射的增强而逐渐降低,且平均φ(CO2)水平与下垫面植被量成反比,φ(CO2)日变化的幅度与下垫面植被量成反比.作为全球基准站之一的瓦里关山站,2004—2008年φ(CO2)年均值逐年增加,年增长率为2.28×10-6/a.  相似文献   

7.
为研究武汉大气PM2.5中微量元素的污染特征和来源,采用电感耦合等离子体质谱(ICP-MS)分析了11种典型微量元素的浓度水平,并通过元素相关性、因子分析、富集特征等方法对其来源进行了分析.研究表明,武汉大气PM2.5中的微量元素污染在夏季较为严重,秋季次之,冬季较轻.与国内其他城市相比,武汉大气PM2.5中的Zn、Ni、Cr的浓度值显著偏高,而Mn、Cu、Se、Pb、As、Ti的浓度值则较低,Cd排放不明显.Pearson相关系数分析表明,Zn、Mn、Cu、Pb、Cd、Se很可能来自同一污染源.因子分析表明,微量元素污染主要来源于钢铁冶金、合金制作和工业燃油3个方面.富集因子分析表明,Ti、Se、Cd、Ni、Pb、Zn、Cr主要来源于人为污染;而Cu和As则部分来源于人为污染,部分来源于土壤.  相似文献   

8.
北京市采暖期大气中PM_(10)和PM_(2.5)质量浓度变化分析   总被引:8,自引:0,他引:8  
对北京市2003年11月至12月间供暖期中大气悬浮颗粒物污染状况作了较详细的监测.数据表明,北京市的这段时间,其PM10和PM2.5质量浓度因日因月而异,其中PM10平均质量浓度为253.1μg/m3,超过国家二级标准(1996)1.9倍,PM2.5的变化幅度在8.9-276.2μg/m3之间,其平均值为145.2μg/m3,超过1999-2000年监测数值38.4%;其污染源和影响因素之间关系的研究表明:在供暖期间,温度、湿度和风速对PM10和PM2.5的累积和消散也起着至关重要的作用.  相似文献   

9.
选取唐山市有代表性的4个监测点:唐山工业区(钢铁冶金工业)、唐山丰南(经济开发区)、唐山监测中心站(居民区)、唐山大学城(大学区),于2012年7月连续1个月采集PM2.5样品;通过分析PM2.5的元素和水溶性组分,研究了唐山市PM2.5污染特性,并应用正交矩阵因子分解法(PMF)对PM2.5来源进行了解析.结果表明:唐山夏季PM2.5平均质量浓度为97μg/m3;4个功能区PM2.5质量浓度空间变化为工业区>经济开发区>大学区>居民区.工业区和经济开发区Fe、Pb、Mn元素富集程度明显高于其他区域.大学区受周边建筑活动影响较大,PM2.5样品中Al浓度最高.监测中心和丰南区采样点紧邻交通干线,PM2.5受机动车影响明显高于其他区域.唐山夏季二次无机气溶胶占PM2.5的47.7%,高温度、高湿度有利于二次无机气溶胶的生成,SO2转化率(SOR)为0.57,NO2转化率(NOR)为0.39.夏季PM2.5主要来源有金属冶金工业,建筑尘、燃煤尘及其他无组织尘,机动车,水泥建材及玻璃陶瓷行业,外来颗粒物区域性传输也是导致PM2.5污染的重要原因之一.  相似文献   

10.
利用银川市2013年空气污染物日浓度资料,分析了其PM10、PM2.5的质量浓度变化特征及空气质量分指数等级特征.结果表明,PM10和PM2.5的质量浓度变化具有明显的季节特征,夏季最低,冬季最高,PM10质量浓度春季高于秋季,而PM2.5质量浓度春季略低于秋季;PM10和PM2.5月均质量浓度变化均为1月份最大,7月份最小;PM2.5和PM10日均质量浓度显著相关,相关系数达0.76,在2013年中,PM2.5占PM10质量载荷的36%.PM10和PM2.5在7—9月质量浓度低,空气质量分指数等级最好,达标率均为100%,在1月空气质量分指数等级最差.PM10和PM2.5分指数等级具有明显的季节特征,夏季空气质量分指数等级最好,冬季最差,PM10分指数等级秋季好于春季,PM2.5分指数等级春季好于秋季.  相似文献   

11.
自2014年以来,中国细颗粒物(PM2.5)浓度大幅度下降,但臭氧(O3)浓度逐年缓慢上升,厘清PM2.5和O3(P-O)相关性尤为关键.在本研究中,2014—2019年北京和南京PM2.5年均质量浓度下降幅度分别为-6.86和-6.15 μg·m-3·a-1;而日最大8小时平均O3质量浓度(MDA8 O3)年均增长幅度为1.50和1.75 μg·m-3·a-1.研究期间,北京地区MDA8 O3质量浓度小于100 μg·m-3,P-O呈负相关;而当质量浓度大于100 μg·m-3时,P-O为正相关.通过Pearson相关系数研究P-O两者相关性.在两个城市每月相关性分析中,在每日时间尺度5—9月为强的正相关;而小时时间尺度11月至次年2月趋于负相关.在北京,P-O每月和季节相关性变化大于南京.在日变化中,夏季在16时为强的正相关,春秋两季在13—17时为弱的正相关,而在春、秋和冬季8时,却为强的负相关.  相似文献   

12.
基于2017年12月25日至2018年1月16日1 h时间分辨率的在线监测数据,对华南沿海城市——阳江市的大气PM2.5质量浓度、化学组分和来源进行了分析.结果表明,采样时段阳江市PM2.5中主要化学组分为OM、NO3-、SO42-、NH4+和EC,质量浓度占比分别为32.75%、25.59%、16.41%、12.37%和4.82%.相比清洁过程,两次污染过程期间NO3-质量浓度均为清洁过程时段的6倍以上,增量明显高于其他组分,占比则均为清洁过程时段的2倍以上,分别占29.38%和30.81%.PMF解析结果表明,二次转化源是最主要的源,其分担率高达51.41%,其中NOx二次转化源分担27.18%,是阳江市PM2.5分担率最大的二次转化源.首要的一次排放源是机动车源(15.11%).污染过程期间NOx二次转化源的分担率显著提...  相似文献   

13.
对2017年11月1日—2018年1月31日与2018年11月1日—2019年1月31日连续两年青岛市大气PM1进行监测,获取了PM1中含碳组分的变化趋势,结合国控站点监测数据和气象条件,分析了秋冬季PM1来源.结果表明:2017、2018年秋冬季观测期间PM1日均质量浓度分别为40.58±25.98、42.55±25.05 μg/m3;霾日质量浓度分别为84.71±16.70、81.52±18.39 μg/m3.与2017年相比,2018年同期PM1质量浓度增长4.85%,霾日下降3.76%.2017年霾日PM1中OC、EC质量浓度分别为13.67±3.95、3.95±1.02 μg/m3,2018年分别为16.48±6.34、3.34±1.16 μg/m3.与2017年相比,2018年霾日OC质量浓度增长20.56%,EC下降15.44%.2017、2018年霾日SOC质量浓度分别是非霾日的1.28和2.15倍,表明霾污染发生时易发生有机碳二次转化.含碳组分主成分分析均解析出3个因子.因子1解释变量均最大,分别为58.98%、67.14%,其表征含碳组分主要源于生物质燃烧、燃煤、道路扬尘及汽油车尾气等排放源.由后向气流轨迹分析得出,2017、2018年秋冬季气团轨迹多起源于内蒙古,经河北、天津、山东等省市抵达青岛.  相似文献   

14.
为解决PM2.5的多站点同步预测问题,提出一种贝叶斯框架下的分层自回归时空模型.将PM2.5日均浓度真实值视为潜在时空过程,利用一阶自回归过程刻画时间相关性,并基于Matérn过程捕获空间相关性,极大程度地提高了降维和同步预测的效率.此外,还将日最高温度、相对湿度和风速等气象因素作为解释变量,用于提升PM2.5的预测效果.借助模型的分层结构,通过贝叶斯方法结合马尔可夫链蒙特卡罗(MCMC)算法实现参数估计和预测过程.对北京市日均PM2.5浓度的实证分析表明,模型在空间和时间维度上均有良好的插值或预测效果.  相似文献   

15.
LiNi0.45Co0.10Mn0.45O2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 °C in air. The structures and characteristics of LiNi0.45Co0.10Mn0.45O2, LiCoO2 and LiMn2O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.45Co0.10Mn0.45O2 has a layered structure with hexagonal lattice. The commercial LiCoO2 has sphere-like appearance and smooth surfaces, while the LiMn2O4 and LiNi0.45Co0.10Mn0.45O2 consist of cornered and uneven particles. LiNi0.45Co0.10Mn0.45O2 has a large discharge capacity of 140.9 mA · h/g in practical lithium ion battery, which is 33.4% and 2.8% above that of LiMn2O4 and LiCoO2, respectively. LiCoO2 and LiMn2O4 have higher discharge voltage and better rate-capability than LiNi0.45Co0.10Mn0.45O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3% at the 250th cycle. Batteries with LiMn2O4 or LiNi0.45Co0.10Mn0.45O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes. Foundation item: Project(50302016) supported by the National Natural Science Foundation of China; Project(2005037698) supported by the Postdoctoral Science Foundation of China  相似文献   

16.
The kinetics of Fe3O4 formation by air oxidation of slightly acidic suspension of Fe(OH)2 was studied. The effects of initial concentration of Fe(II), temperature, partial pressure of oxygen, air flow rate and stirring rate on the oxidation rate were investigated. The results show that Fe3O4 formation is composed of two-step reaction, the first step is the formation of Fe(OH) 2 + by oxidation of Fe(OH)+ complex ions, the second step is the formation of magnetite by dehydration and deprotonation of Fe(OH)+ and Fe(OH) 2 + . The oxidation reaction is zero-order with respect to the concentration of Fe(II) and around 0.5-order with respect to partial pressure of oxygen, and oxygen transfer process is rate-limiting step of oxidation reaction with apparent activation energy of 2.74 kJ · mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号