首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead zirconium titanate (PZT) thin films of the morphotropic phase boundary composition [Pb(Zr0.52Ti0.43)O3] were deposited on platinum-coated silicon by a modified sol-gel process using lead acetylacetonate as the lead source. The precursor solution for spin coating was prepared from lead acetylacetonate, zirconium n -butoxide, and titanium isopropoxide. The use of lead acetylacetonate instead of the widely used lead acetate trihydrate provided more stability to the PZT precursor solution. Films annealed at 700°C for 12 min formed well-crystallized perovskite phase of Pb(Zr0.52Ti0.48)O3. Microstructures of these films indicated the presence of submicrometer grains (0.1 to 0.2 μm). The dielectric constant and loss values of these films measured at 10 kHz were approximately 1200 and 0.04, respectively, while the remanent polarization and coercive field were ∼ 13 μC/cm2 and ∼ 35 kV/cm. Aging of the solution had almost no effect on the dielectric and ferroelectric properties of these films.  相似文献   

2.
Lead titanate (PT) sols were prepared using propanediol, butanediol, or pentanediol solutions of lead acetate trihydrate and titanium diisopropoxide bis(acetylacetonate). Precursor sols for PbZr0.53Ti0.47O3 (PZT) films were prepared from propanediol solutions, with zirconium tetrapropoxide being used as the zirconium source. Films were formed by spin-coating the sols onto silicon and platinized silicon substrates; the resulting gel layers were converted to ceramic films by adopting a two-stage heating schedule with final firing temperatures of 600–700°C. Information on film crystallization, microstructure development, and electrical properties is presented for both compositions. The limiting thickness of surface-smooth crack-free single-layer films was ∼1 μm. The PT films exhibited a "linear" polarization-electric field ( P-E ) response, while the PZT films gave rise to characteristic ferroelectric P-E hysteresis loops. A 0.5 μm thick single-layer PZT film exhibited remanent polarization (Pr) values of ∼34 μC·Cm−2, with a coercive field ( E c) of ∼45 kV·Cm−2; the relative permittivity (ɛr) and the dissipation factor ( D ) were ∼1250 and 0.07. For a 1 μm single-layer PZT film, the respective values were P r∼19 μC∼Cm−2, E c∼40 kV∼Cm−2, ɛr∼750, and D = 0.03.  相似文献   

3.
Lead zirconate titanate (PZT) thin films were prepared on platinized silicon substrates by dip-coating using a modified diol-based sol–gel route without and with up to 5 mol% PZT nanometric seeds dispersed in the precursor sol. A metastable intermetallic Pt x Pb phase formed at the early stages of heat treatment. XRD, TEM, and RBS revealed that the thickness and stoichiometry of the Pt x Pb layer varied with the concentration of seeds and heat treatment of the films. The relation of the Pt x Pb layer to the final crystalline texture of the PZT thin films is reported and discussed.  相似文献   

4.
Zirconia powders doped with C60 molecules were prepared from an aqueous solution of zirconium oxynitrate dihydrate, C60 and C16TMA, and sintered at 600°C under 5.5 GPa for 2 h. C60 was found to be retained in the sintered specimens by HRTEM, and carbon was observed to be uniformly dispersed by the SEM-EDX analysis. HRTEM observations of the sintered specimens exhibited the formation of ZrO2 crystal grains covered with thin graphitic or amorphous carbon films.  相似文献   

5.
Lead zirconate titanate (PZT) thin films were deposited by metal-organic chemical vapor deposition (MOCVD) using β-diketonate precursors and 02 at temperatures below 500°C on variously passivated Si substrates. PZT thin films could not be deposited on bare Si substrates, owing to a serious diffusion of Pb into the Si substrate during deposition. Pt/SiO2/Si substrates could partially block the diffusion of Pb, but a direct deposition of PZT thin films on the Pt/SiO2/Si substrates resulted in a very inhomogeneous deposition. A TiO2 buffer layer deposited on Pt/SiO2/Si substrates could partially suppress the diffusion of Pb and produce homogeneous thin films. However, the crystallinity of PZT thin films deposited on the TiO2-buffered Pt/SiO2/Si substrate was not good enough, and the films showed random growth direction. PZT thin films deposited on the PbTiO3-buffered Pt/SiO2/Si substrates had good crystallinity and a- and c-axis oriented growth direction. However, the PZT thin film deposited at 350°C showed fine amorphous phases at the grain boundaries, owing to the low chemical reactivities of the constituent elements at that temperature, but they could be crystallized by rapid thermal anneaiing (RTA) at 700°C. PZT thin film deposited on a 1000-å PbTiO3,-thin-film-buffered Pt/SiO2/Si substrate at 350°C and rapid thermally annealed at 700°C for 6 min showed a single-phase perovskite structure with a composition near the morphotropic boundary composition.  相似文献   

6.
Barium strontium titanate, (Bax,Sr1-x TiO3, thin films of various compositions were prepared by a sol-gel method. Solutions consisting of acetate powders and titanium IV isopropoxide in a mixture of acetic acid and ethylene glycol were spin-coated onto silicon and platinum-coated silicon substrates. Processing parameters were optimized to develop stable solutions which yielded films with relatively low crystallization temperatures. It was determined that ethylene glycol was a necessary component of the solution to increase stability to precipitation and to decrease the crystallization temperature of the films. The grain size of the films varied with annealing temperature and atmosphere and directly affected the dielectric properties. A dielectric constant of 400 and a dissipation factor of 0.04 were measured at 1 kHz for (Ba0.8,Sr0.2) TiO3 films heated to 700°C for 1 h with a thickness of approximately 400 nm. Films of this composition maintained low leakage current densities for extended time periods when measured at an applied field of 75 kV/cm.  相似文献   

7.
Lead lanthanum zirconate titanate (Pb1− x La x (Zr y ,Ti z )O3, PLZT) films containing [00 l ] preferentially oriented grains were produced successfully on YBa2Cu3O7− x -coated (YBCOcoated) SrTiO3 (STO) or YBCO/CeO2-coated silicon substrates; films containing randomly oriented grains were created on platinum-coated silicon substrates. The latter possessed significantly inferior ferroelectric properties, a fact ascribed to the presence of a paraelectric phase (TiO2) at the PLZT/platinum interface. On the other hand, the PLZT/YBCO/STO films exhibited better electrical properties than did the PLZT/YBCO/CeO2/Si films, and this phenomenon was attributed to better alignment of the grains in normal and in-plane orientations. In terms of fatigue properties, the [00l] textured films that were deposited on YBCO/CeO2/Si substrates possessed substantially superior polarization-switching-cycle endurance versus the randomly oriented films grown on Pt(Ti)/Si substrates. Moreover, the tetragonal films behaved much more satisfactorily than did the rhombohedral PLZT films. The ferroelectric parameters of tetragonal PLZT films showed no significant degradation up to 109 polarization switching cycles, whereas the remnant polarization and coercive force of the rhombohedral PLZT films had already degraded to 80% of their initial values after 108 cycles.  相似文献   

8.
Crack-free Pb(Zr,Ti)O3 (PZT) thin films with preferred orientation were prepared successfully on MgO (100), SrTiO3 (100), and Pt/Ti/SiO2/Si substrates from metal alkoxide solutions. Calcination of precursor films in a H2O─-O2 gas mixture was found to be effective not only for low-temperature crystallization of perovskite PZT, but also for obtaining the preferred orientation of PZT films. Single-phase PZT films with high preferred orientation were synthesized on MgO (100) and Pt/Ti/SiO2/Si substrates at 550° and 600°C for 2 h, respectively. The PZT film on the Pt/Ti/SiO2/Si substrate showed a permittivity of 520, tan δ of 0.03, a remanent polarization of 24 μC/cm2, and a coercive field of 54 kV/cm.  相似文献   

9.
Undoped or Y2O3-doped ZrO2 thin films were deposited on self-assembled monolayers (SAMs) with either sulfonate or methyl terminal functionalities on single-crystal silicon substrates. The undoped films were formed by enhanced hydrolysis of zirconium sulfate (Zr(SO4)·4H4O) solutions in the presence of HCl at 70°C. Typically, these films were a mixture of two phases: nanocrystalline tetragonal- ( t -) ZrO2 and an amorphous basic zirconium sulfate. However, films with little or no amorphous material could be produced. The mechanism of film formation and the growth kinetics have been explained through a coagulation model involving homogeneous nucleation, particle adhesion, and aggregation onto the substrate. Annealing of these films at 500°C led to complete crystallization to t -ZrO2. Amorphous Y2O3-containing ZrO2 films were prepared from a precursor solution containing zirconium sulfate, yttrium sulfate (Y2(SO4)38·H2O), and urea (NH2CONH2) at pH 2.2–3.0 at 80°C. These films also were fully crystalline after annealing at 500°C.  相似文献   

10.
A triol-based sol–gel system has been developed for the fabrication of thin films of lead zirconate titanate (PZT). Starting reagents were lead acetate, zirconium and titanium isopropoxides, acetylacetone, and 1,1,1-tris(hydroxymethyl)ethane (THOME), with 2-methoxyethanol (MOE) being used to dilute the sols for spin coating purposes. Preliminary characterization by NMR spectroscopy suggested that the gels consisted of the metal ions and bound THOME, acetylacetonate, and acetate residues, with some possible M–O–M bridges. Uncracked 0.4 μm single-layer PZT films of nominal composition PbZr0.53Ti0.47O3 were prepared on platinized substrates. Dielectric and ferroelectric properties were determined for samples made from sols containing 10 and 15 mol% excess lead acetate. Improved values were obtained for samples made from sols containing the higher excess; these exhibited a remanent polarization of 34 μC·cm−1, a coercive field of 54 kV·cm−1, and a relative permittivity of 1000.  相似文献   

11.
Lead zirconate titanate (Pb(Zr,Ti)O3, PZT) thin films were grown on silicon 〈100〉 substrate by aerosol plasma deposition (APD) using solid-state-reacted powder containing donor oxide Nb2O5 when keeping the substrate at room temperature and 200°C. Crystalline phases of the deposited films have been analyzed via X-ray diffractometry (XRD), and microstructure via scanning and transmission electron microscopy (SEM and TEM). Cross-sectional TEM revealed that the microstructure comprised several layers including the deposited PZT film and the platinum-electrode-and-titanium-buffered layers on SiO2–Si substrate. The Pt-electrode layer contained (111)Pt twinned columnar grains with a slight misorientation and forming low-angle grain boundaries among them. The PZT layer contained randomly oriented grains embedded in an amorphous matrix. Some of the PZT grains, oriented with the zone axis Z = [[Twomacr]11]PZT parallel to Z = [111]Pt, were grown epitaxially on the Pt layer by sharing the (111)PZT plane with the (111)Pt twinned columnar Pt crystals. However, the existence of such an orientation relationship was confined to several nanosize grains at and near the PZT-Pt interface, and no gross film texture has been developed. An amorphous grain boundary phase, generated by pressure-induced amorphisation (PIA) in the solid state, was identified by high-resolution imaging. Its presence is taken to account for the densification of the PZT thin films via a sintering mechanism involving an amorphous phase on deposition at 25° and 200°C.  相似文献   

12.
Ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 (PMN-PT) thin films were deposited on ZrO2/SiO2/silicon substrates using a chemical-solution-deposition method. Using a thin PZT film as a seed layer for the PMN-PT films, phase-pure perovskite PMN-PT could be obtained via rapid thermal annealing at 750°C for 60 s. The electrical properties of in-plane polarized thin films were characterized using interdigitated electrode arrays on the film surface. Ferroelectric hysteresis loops are observed with much larger remanent polarizations (∼24 μC/cm2) than for through-the-thickness polarized PMN-PT thin films (10–12 μC/cm2) deposited on Pt/Ti/Si substrates. For a finger spacing of 20 μm, the piezoelectric voltage sensitivity of in–plane polarized PMN-PT thin films was ∼20 times higher than that of through-the-thickness polarized PMN-PT thin films.  相似文献   

13.
Polycrystalline BaWO4 and PbWO4 thin films having a tetragonal scheelite structure were prepared at different temperatures. Soluble precursors such as barium carbonate, lead acetate trihydrate and tungstic acid, as starting materials, were mixed in aqueous solution. The thin films were deposited on silicon, platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and specular reflectance infrared Fourier transform spectroscopy, respectively. Nucleation stages and surface morphology evolution of thin films on silicon substrates have been studied by atomic force microscopy. XRD characterization of these films showed that BaWO4 and PbWO4 phase crystallize at 500 °C from an inorganic amorphous phase. FTIR spectra revealed the complete decomposition of the organic ligands at 500 °C and the appearance of two sharp and intense bands between 1000 and 600 cm−1 assigned to vibrations of the antisymmetric stretches resulting from the high crystallinity of both thin films. The optical properties were also studied. It was found that BaWO4 and PbWO4 thin films have Eg=5.78 eV and 4.20 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of BaWO4 and PbWO4 thin films.  相似文献   

14.
Integrated lead zirconate titanate thin films deposited on Pt/Ti/SiO2/Si substrates using a novel triol-based route were characterized using X-ray diffraction and transmission electron microscopy. Crack-free single-layer PZT films of up to 200 nm thick were prepared by triol-based sol–gel processing onto Pt/Ti/SiO2/Si substrates. Films ∼75 nm thick exhibited a microstructure free of pores and second phase. As film thickness increased, film texture changed from {100} to {111} perovskite. Essentially, single-phase multilayer films could be prepared by the deposition and pyrolysis of several 75 nm layers, followed by a single crystallization step. The influence of heat-treatment schedule on the microstructure and orientation of the multilayer films is discussed. Comparison has been made between multilayer films prepared using the triol-based sol and an inverted mixing order/acetic acid-based sol.  相似文献   

15.
The printing of lead zirconate titanate (PZT, Pb(Zr,Ti)O3) piezoelectric thick films on silicon substrates is being studied for potential use as microactuators, microsensors, and microtransducers. A fundamental challenge in the fabrication of useful PZT thick-film devices on silicon is to sinter the PZT to high density at sufficiently low temperature to avoid mechanical or chemical degradation of the silicon substrate. The goal of the present study is to develop and implement suitable electrodes and PZT sintering aids that yield attractive piezoelectric properties for devices while minimizing reactions between the silicon, the bottom electrode, and the PZT thick film. A B2O3-Bi2O3-CdO sintering aid has been found to be superior to borosilicate glass, and the use of a gold/platinum bilayer bottom electrode has resulted in better thermal stability of the electrode/film structure. Films sintered at 900°C for 1 h have relative permittivity of 970 (at 1 kHz), remnant polarization of 20 μC/cm2, coercive field of 30 kV/cm, and weak-field piezoelectric coefficient d 33 of 110 pm/V.  相似文献   

16.
Zirconium titanate exhibits crystallographic anisotropy in thermal expansion, which makes it a suitable candidate for low thermal expansion materials. In this work, zirconium titanate has been synthesized by reaction sintering the green bodies, which have been obtained by colloidal filtration of concentrated suspensions of yttria-tetragonal zirconia polycrystals (Y–TZP) and titania. Powders were mixed in a 50/50 mol% ratio (ZT50) to obtain pure zirconium titanate. Rheological characterization of the suspensions has allowed the establishment of optimum green processing conditions. Sintering has been performed at 1400°C for 2 h, and the obtained materials have been characterized by X-ray diffraction, and scanning electron microscopy with energy-dispersive X-ray microanalysis. The ZT50 material has Zr5Ti7O24 as the major phase, although Y2 ((Zr0.3Ti0.7)2O7) and unreacted Y–TZP can still be detected.  相似文献   

17.
Pb0.98(La1− x Li x )0.02(Zr0.55Ti0.45)O3(PLLZT with 0.1 ≤ x ≤ 0.7) thin films were sol-gel-grown on Pt(111)/Ti/SiO2/Si substrates, employing a thin lead zirconate titanate (PZT) template layer. Films annealed at >550°C showed a highly (111)-oriented preferential growth. Typical values of the switchable remanent polarization (2 P r) and the coercive field ( E c) of the PLLZT/PZT/Pt film capacitor for x = 0.3 were 50 μC/cm2 and 39 kV/cm, respectively, at 5 V. All the PLLZT/PZT/Pt capacitors (for 0.1 ≤ x ≤ 0.7) exhibited fatigue-free behavior up to 6.5 × 1010 switching cycles, a quite stable charge retention profile with time, and high 2 P rvalues, all which assure their suitability for nonvolatile ferroelectric memories.  相似文献   

18.
Oriented (Ti,Sn)O2 thin films with modulated microstructure were successfully synthesized on sapphire substrates by using sol–gel processing combined with spinodal decomposition. The degree of orientation of (Ti0.5Sn0.5)O2 thin films increased in the following order: sapphire (0001), (11     0), and (01     2). (Ti0.5Sn0.5)O2 thin films underwent spinodal decomposition at 900°C by annealing. The variation of the 2theta value of the 202 reflection of (Ti0.5Sn0.5)O2 films showed the typical behavior of spinodal decomposition. The rate of spinodal decomposition of the (Ti0.5Sn0.5)O2 films on sapphire (11     0) was faster than that on sapphire (01     2) substrates. The characteristic modulated microstructure was observed for the spinodally decomposed (Ti0.5Sn0.5)O2 films on sapphire (01     2) substrates by transmission electron microscopy. (Ti0.3Sn0.7)O2 films on sapphire (01     2) substrates were binodally decomposed during annealing at 1300°C.  相似文献   

19.
Lead zirconate titanate PbZr0.53Ti0.47O3 (PZT) thick films have been deposited on silicon substrate by modified metallorganic decomposition process. Crack-free PZT films of 8 μm thickness can be obtained by using lanthanum nickelate LaNiO3 (LNO) as buffer layer. The greater LNO thickness, the greater thickness of crack-free PZT can be obtained. The X-ray diffraction measurements show the films exhibit a single perovskite phase with (110) preferred orientation. SEM measurements showed the PZT thick films have a columnar structure with grain size about 60–200 nm. The thickness dependence of ferroelectric, dielectric, and piezoelectric properties of PZT thick films have been characterized over the thickness range of 1–8 μm. For PZT with thickness of 8 μm, P r and E c are 30 μC/cm2 and 35 kV/cm, and dielectric constant and dielectric loss are 1030 and 0.031, respectively. The piezoelectric coefficient ( d 33) of PZT with 8 μm thickness is obtained to be 77 pm/V. PZT thick films on LNO-coated Si substrate are potential for MEMS applications.  相似文献   

20.
We have fabricated highly oriented, chemically prepared thin films of Pb(Zr0.04Tio.0.60)O3 (PZT 40/60) on both insulating and conducting substrates. While (100) MgO single crystals were used as the insulating substrates, the conducting substrates. were fabricated by RF magnetron sputter deposition of 100-nm-thick (100) Pt films onto (100) MgO substrates. For comparison, we also fabricated PZT 40/60 films that had no significant preferential orientation on platinized MgO substrates. Sputter deposition of an underlying amorphous Pt film was used to fabricate randomly oriented PZT 40/60 films. Highly (001) oriented PZT 40/60 films had higher remanent polarization (61 μC/cm2 compared to 41 μC/cm2) and lower relative dielectric constant (368 compared to 466) than PZT 40/60 films that were randomly oriented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号