首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
利用量子化学密度泛函理论的B3LYP方法,在6-311G的水平上,对锗烯X2Ge(X=H、CH3、F、Cl、Br)与C2H4的环加成反应进行了计算研究.结果表明,锗烯的基态是单重态,取代基的电负性越强,单-三态的能量差越大;控制反应的因素是电子效应,而不是立体效应;取代基的电负性越强,反应的活化能越高,放热越少;该反应由两步组成,第一步生成中间配合物,是一个无势垒的放热过程,第二步经过渡态生成产物.  相似文献   

2.
利用量子化学密度泛函理论的B3LYP方法,在6-311G**的水平上,对锗烯X2Ge(X=H、CH3、F、Cl、Br)与C2H4的环加成反应进行了计算研究.结果表明,锗烯的基态是单重态,取代基的电负性越强,单-三态的能量差越大;控制反应的因素是电子效应,而不是立体效应;取代基的电负性越强,反应的活化能越高,放热越少;该反应由两步组成,第一步生成中间配合物,是一个无势垒的放热过程,第二步经过渡态生成产物.  相似文献   

3.
用量子化学密度泛函理论(DFT)的B3LYP和从头算MP2方法在6-311G(d, p)水平上对亚烷基锗烯与环氧乙烷的氧转移及环硫乙烷的硫转移的反应机理进行了系统的研究, 计算了势能面上各驻点的构型参数、振动频率和能量; 并用CCSD(T)/6-311G(d)方法进行了单点能校正. 结果表明, 亚烷基锗烯与环氧乙烷和环硫乙烷抽提氧和硫的反应存在顺反两种反应方式, 分别生成锗杂烯酮(P1)、硫代锗杂烯酮(P4)以及锗杂环氧乙酮(P2)、锗杂环硫乙酮(P5), 环状产物P2和P5能继续与环氧乙烷或环硫乙烷反应, 进一步生成更稳定的产物甲醛(P3-1)、一氧化锗(P3-2)及锗烯的二硫化物(P6), 且反式反应是主要的反应通道. 同时还研究了该反应中环氧乙烷C—O键和环硫乙烷C—S键的解离过程, 并与亚烷基卡宾和环氧乙烷及环硫乙烷的抽提反应进行了比较.  相似文献   

4.
用量子化学密度泛函理论(DFT)的B3LYP和从头算MP2方法在6-311G(d, p)水平上对亚烷基锗烯与环氧乙烷的氧转移及环硫乙烷的硫转移的反应机理进行了系统的研究, 计算了势能面上各驻点的构型参数、振动频率和能量; 并用CCSD(T)/6-311G(d)方法进行了单点能校正. 结果表明, 亚烷基锗烯与环氧乙烷和环硫乙烷抽提氧和硫的反应存在顺反两种反应方式, 分别生成锗杂烯酮(P1)、硫代锗杂烯酮(P4)以及锗杂环氧乙酮(P2)、锗杂环硫乙酮(P5), 环状产物P2和P5能继续与环氧乙烷或环硫乙烷反应, 进一步生成更稳定的产物甲醛(P3-1)、一氧化锗(P3-2)及锗烯的二硫化物(P6), 且反式反应是主要的反应通道. 同时还研究了该反应中环氧乙烷C—O键和环硫乙烷C—S键的解离过程, 并与亚烷基卡宾和环氧乙烷及环硫乙烷的抽提反应进行了比较.  相似文献   

5.
应用密度泛函理论DFT方法,在B3LYP/6-311G(d,p)水平上研究了不饱和类锗烯H2C=GeNaBr的结构及异构化反应.结果表明,不饱和类锗烯H2C=GeNaBr有3种平衡构型,其中非平面的p-配合物型构型能量最低,是其存在的主要构型.并对平衡构型间异构化反应的过渡态进行了计算,求得了转化势垒,预言了最稳定构型的振动频率和红外强度.  相似文献   

6.
应用密度泛函理论DFT方法,在B3LYP/6-311G(d,p)水平上研究了不饱和类锗烯H2CGeNaBr的结构及异构化反应.结果表明,不饱和类锗烯H2CGeNaBr有3种平衡构型,其中非平面的p-配合物型构型能量最低,是其存在的主要构型.并对平衡构型间异构化反应的过渡态进行了计算,求得了转化势垒,预言了最稳定构型的振动频率和红外强度.  相似文献   

7.
采用密度泛函理论方法, 在B3LYP/6-311G(d, p)水平上研究了不饱和类锗烯H2C=GeLiCl的结构及异构化反应. 结果表明, 不饱和类锗烯H2C=GeLiCl有三种平衡构型, 其中非平面的p-配合物型构型能量最低, 是其存在的主要构型. 对平衡构型间异构化反应的过渡态进行了计算,求得了转化势垒. 计算预言了最稳定构型的振动频率和红外吸收强度.  相似文献   

8.
锗烯与甲醛环加成反应的理论研究   总被引:4,自引:0,他引:4  
用从头算方法研究了单重态锗烯与甲醛环加成反应的机理,找到了反应的中间配合物和过渡态,并讨论了反应机理.在从头算的基础上,用统计热力学方法和过渡态理论计算了该反应在不同温度下的热力学函数的变化和动力学性质.结果表明,此反应由两步组成:(1)锗烯与甲醛反应生成了一中间配合物,是一无势垒的放热反应;(2)中间配合物异构化得到产物锗杂环氧甲烷,此步势垒经零点能校正后只有69.6kJ/mol(MP2/3-21G//3-21G).从热力学和动力学角度综合考虑,该反应在400~500K温度下进行为宜,此时,反应既有较大的自发趋势和平衡常数,又具有较快的反应速率.  相似文献   

9.
插烯式四硫富瓦烯(tetrathiafulvalene vinylogues,TTFV)化合物由于其优良的供电子性质在有机电子学研究中引人关注.TTFV类化合物的合成通常是利用烯键键链的二硫富瓦烯(diathiafulvalene,DTF)化合物通过I2以及Ag BF4等氧化偶联反应来制备,其存在产率较低、毒性较大等局限.鉴于萘基团的荧光性质以及硫代丙腈基的衍生化反应特点,以亚磷酸三甲酯为偶联剂,含丙腈基硫酮化合物1与1-萘醛发生偶联反应生成二硫富瓦烯化合物2.在四氯苯醌(chloranil,CA)/甲磺酸(methanesulfonic acid,MSA)催化条件下,化合物2氧化偶联得到插烯式四硫富瓦烯化合物3.初步优化了四氯苯醌-甲磺酸(CA-MSA)催化反应条件.优化的反应条件为:1.5 equiv.的CA催化剂,甲磺酸与二氯甲烷的体积比为1∶10,氮气保护下室温反应2 h,化合物3的产率可达86.7%.通过1H NMR,~(13)C NMR,FT-IR,MS方法对插烯式四硫富瓦烯衍生物3分别进行了表征分析,同时用X射线衍射法确认了化合物3的晶体结构.与传统的I2氧化偶联反应进行了实验比较,结果表明在甲磺酸存在下,以四氯苯醌为有机氧化剂合成插烯式四硫富瓦烯衍生物的新方法简便有效.  相似文献   

10.
采用DFT B3LYP和QCISD方法研究了不饱和类锗烯H2C=GeLiCl与RH(R=F, OH, NH2)的插入反应. 在B3LYP/6-311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=GeLiCl与HF、H2O 或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为173.53、194.48和209.05 kJ·mol-1, 反应热分别为60.18、72.93和75.34 kJ·mol-1. 相同条件下发生插入反应时, 反应活性顺序都是H—F>H—OH>H—NH2.  相似文献   

11.
The mechanism of the sulfur extraction reaction between singlet germylene carbene and its derivatives [X2Ge?C: (X = H, F, Cl, CH3)] and thiirane has been investigated with density functional theory, including geometry optimization and vibrational analyses for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps: (1) the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; (2) the INT then isomerizes to a product via a transition state (TS). This kind reaction has similar mechanism, when the germylene carbene and its derivatives [X2Ge?C: (X = H, F, Cl, CH3)] and thiirane get close to each other, the shift of 3p lone electron pair of S in thiirane to the 2p unoccupied orbital of C in X2Ge = C: gives a pp donor–acceptor bond, leading to the formation of INT. As the pp donor–acceptor bond continues to strengthen (that is the C? S bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity that mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
The mechanisms of theion reaction of alkylidenegermylene with oxirane and thiirane have been characterized detail in using density functional theory, as well as ab initio method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies were calculated by CCSD(T)/6-311G(d)//B3LYP/6-311G(d,p) method for the involved conformations. The results show that the reaction pathways for both reactions consist of two ways: (1) the reactants can yield bent products (P1; P4) by syn-isomers; (2) the reactants can also yield three-membered products (P2; P5) by anti-isomers, which then further react with oxirane and thiirane to form the ultimate products (P3-1, P3-2; P6). Furthermore, a comparison with alkylidenecarbene, oxirane, and thiirane was done.  相似文献   

13.
Arrhenius rate expressions were determined for the abstraction of bromine atom from 2-phenethyl bromide by tri-n-butylstannyl radical (Bu(3)Sn(*)) in benzene using transient absorption spectroscopy, (log(k(abs,Br)/M(-1) s(-1)) = (9.21 +/- 0.20) - (2.23 +/- 0.28)/theta, theta = 2.3RT kcal/mol, errors are 2sigma) and for the abstraction of sulfur atom from propylene sulfide to form propylene, (log(k(s)/M(-1) s(-1)) = (8.75 +/- 0.91) - (2.35 +/-1.33)/theta). Rate constants for reactions of organic bromides, RBr, with Bu(3)Sn(*) were found to vary as R = benzyl (15.6) > thiiranylmethyl (6.2) > oxiranylmethyl (3.1) > cyclopropylmethyl (1.3) > 2-phenethyl (1.0), with k(abs,Br) = 6.8 x 10(7) M(-1) s(-1) at 353 K for 2-phenethyl bromide. Bromine abstraction from alpha-bromomethylthiirane is about 7-fold faster than sulfur atom abstraction and is comparable to the reactivity of a secondary alkyl bromide. The potential surface for the vinylthiomethyl --> allylthiyl radical rearrangement at UB3LYP/6-31G(d) and UB3LYP/6-311+G(2d,2p) levels of theory suggests that the thiiranylmethyl radical is produced about 9 kcal/mol above the allylthiyl radical on the rearrangement surface, consistent with the observed enhancement of the Br atom abstraction from the thiirane and with synchronous C-S bond scission of the thiirane ring. The selectivities reported in this work for S vs Cl and Br abstraction provide applications for radical-based synthesis and new competition basis rate expressions for trialkylstannyl radicals.  相似文献   

14.
The potential energy surfaces for the abstraction reactions of silylenes with oxirane and thiirane have been characterized in detail using density functional theory (B3LYP) as well as the ab initio method (QCISD), including zero-point corrections. Five silylene species including SiH(2), Si(CH(3))(2), Si(NH(2))(2), Si(OH)(2), and SiF(2) have been chosen in this work as model reactants. All the interactions involve the initial formation of a donor-acceptor ylide-like complex followed by a heteroatom shift via a two-center transition state. The complexation energies, activation barriers, and enthalpies of the reactions were used comparatively to determine the relative silylenic reactivity, as well as the influence of substituents on the reaction potential energy surface. As a result, our theoretical investigations suggest that, irrespective of deoxygenation and desulfurization, the alkyl-substituted silylene abstractions are much more favorable than those of the pi donor-substituted silylenes. Moreover, for a given silylene, while both deoxygenation and desulfurization are facile processes, the deoxygenation reaction is more exothermic as well as more kinetically favorable. Furthermore, a configuration mixing model based on the work of Pross and Shaik is used to rationalize the computational results. The results obtained allow a number of predictions to be made.  相似文献   

15.
The potential energy surface for the Cl + propene reaction was analyzed at the MP2 level using Pople's 6-31G(d,p) and 6-311+G(d,p), and Dunning's cc-pVDZ and aug-cc-pVDZ basis sets. Two different channels for the addition reaction leading to chloroalkyl radicals and five alternative channels for the abstraction reaction leading to C(3)H(5) (.) + HCl were explored. The corresponding energy profiles were computed at the QCISD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ level of theory. Theoretical results suggest that the previously established mechanism consisting of (1) direct abstraction and (2) addition-elimination steps is instead made up of (1) addition through an intermediate and (2) two-step abstraction processes. No direct abstraction mechanism exists on the potential energy surface. The kinetic equations derived for the new mechanism are consistent with the pressure dependence experimentally observed for this reaction.  相似文献   

16.
锗烯与乙烯环加成反应的理论研究   总被引:8,自引:0,他引:8  
卢秀慧  王沂轩  刘成卜 《化学学报》1999,57(12):1343-1347
用RHF/6-31G^*解析梯度方法研究了单重态锗烯与乙烯环加成反应的机理,用二级微扰方法对各构型的能量进行了相关能校正,并用统计热力学方法和过渡态理论计算了该反应在不同温度下的热力学函数的变化和动力学性质。结果表明,此反应历程由两步组成:1)锗烯与乙烯生成了一中间配合物,是一无势垒的放热反应,2)中间配合物异构化为产物锗杂环丙烷,此步势垒经零点能校正后为26.9kJ.mol^-^1(MP2/6-31G^*//6-31G^*);从热力学和动力学的综合角度考虑,该反应在200-300K温度下进行为宜,如此,反应既有较大的自发趋势和平衡常数,又具有较快的反应速率。  相似文献   

17.
Using high-level ab initio MO methods, we have identified two reaction pathways with different thermodynamic and kinetic properties for the thermal decomposition of the three-membered heterocycle thiirane (C2H4S) and related derivatives. A homolytic ring opening, followed by attack of the generated diradical on another thiirane molecule, and subsequent elimination of ethene in a fast radical chain reaction results in the formation of disulfur molecules in their triplet ground state (3S2) and requires activation enthalpies of deltaH#(298) = 222 kJ mol(-1) and deltaG#(298) = 212 kJ mol(-1). This reaction mechanism would result in a first-order rate law in agreement with one reported gas-phase experiment but does neither match the experimental activation energy nor does it explain the observed retention of the stereochemical configuration in the thermal decomposition of certain substituted thiiranes. Alternatively, sulfur atoms can be transferred from one thiirane moleculeto another with the intermediate formation of thiirane 1-sulfide (C2H4S2). This molecule can either decompose unimolecularly to ethene and disulfur in its excited singlet state (1S2) or, by means of spin crossover, S2 in its triplet ground state may be formed. On the other hand, the thiirane 1-sulfide may react with itself and transfer one sulfur atom from one molecule to another with formation of thiirane 1,1-disulfide (C2H4S3), which is an analogue of thiirane sulfone; thiirane is formed as the second product. The 1,1-disulfide may then decompose to ethene and S3. In still another bimolecular reaction, the thiirane 1-sulfide may react with itself in a strongly exothermic reaction to give S4 and two equivalents of ethene. This series of reactions results in a second-order rate law and requires activation enthalpies of deltaH#(298) = 109 kJ mol(-1) and deltaG#(298) = 144 kJ mol(-1) for the formation of thiirane 1-sulfide, while the consecutive reactions require less activation enthalpy. Elemental sulfur (S8) is eventually formed by oligomerization of either S2, S3, or S4 in spin-allowed reactions. These findings are in agreement with most experimental data on the thermal desulfurization of thiirane and its substituted derivatives. Thiirane 1-persulfide (C2H4S3) with a linear arrangement of the three sulfur atoms as well as zwitterions and radicals derived from thiirane are not likely to be intermediates in the thermal decomposition of episulfides.  相似文献   

18.
The relative rates of reaction of thiirane and thiirane derivatives with NH3, a series of secondary amines including aziridine, and trimethylamine were determined in the gas phase by means of B3LYP/6-31+G(d)//HF/6-31+G(d) computations and transition state theory. Convergence of the results was selectively tested using the 6-311++G(d,p) basis set. Comparison with MP2/6-31 + G(d)//MP2/6-31G(d) computations was made in model cases. These results are significant in that they supplement the only reported gas-phase experimental study of this type of reaction. The reaction rates of thiirane with secondary amines can best be rationalized by means of an interplay of steric and polarizability effects. While beta-halo substituents retard S(N)2 reactions in solution, both 2-fluorothiirane and its acyclic model react more than l0(6) times faster with NH3 than the unsubstituted compounds in the gas phase. 2-Fluorothiirane was calculated to react with NH3 at C2 by a factor of 0.142 with respect to thiirane itself; attack at C3 was found to be 3.42 x 10(6) times faster than the parent compound. 2-Methylthirane reacts with NH3 at 0. 230 the rate of thiirane with a 12.8-fold regioselectivity for C3. In the reaction of 2,2-dimethylthirane and NH3, this preference for C3 increases to a factor of 124. Ground-state destabilization of cis-2,3-dimethylthiirane is sufficient to account for its calculated rate acceleration with respect to the trans isomer.  相似文献   

19.
The insertion reactions of germylene into C-CI bond of 1-chorobenzene have been explored using density functional theory.Five germylene species have been chosen for systematically studying. All the stationary points were determined at the B3LYP/6-311 +G (d, p) level of the theory. The results show that, the smaller the AEsT of germylene, the lower the barrier height, and the electropositive substituents on the germylene can increase the reaction activity and exothermicity of insertion into C-CI bond of 1-chorobenzene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号