首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
Gao F  Yu ZB 《生理学报》2005,57(5):653-658
为观察模拟失重对大鼠比目鱼肌(soleus,SOL)与趾长伸肌(extensor digitorum longus,EDL)间断强直收缩功能的影响,以及对刺激频率的调节作用,采用离体骨骼肌条灌流技术,观测其产生强直收缩最大张力的最适刺激频率、疲劳性与疲劳后恢复过程。结果表明:对照组大鼠SOL强直收缩的最适刺激频率为60Hz,尾部悬吊1周大鼠SOL的最适刺激频率亦为60Hz,尾部悬吊2周后,其最适刺激频率增高为80Hz,4周后则为100Hz;在最适刺激频率作用下,悬吊大鼠SOL间断强直收缩的最大张力(Po)在悬吊1与2周未见改变,第4周才呈现显著性降低(P〈0.01)。间断强直收缩5min后,对照组大鼠SOL张力降低到22.8%Po:悬吊1、2与4周组疲劳性均增加,与其同步对照组相比均有显著性差异(P〈0.01)。疲劳性强直收缩后,在20min内对照大鼠SOL张力基本恢复到疲劳前水平,而悬吊1、2与4周组则不能完全恢复(P〈0.05)。对照组大鼠EDL的最适刺激频率为120Hz,悬吊1、2与4周组EDL的最适刺激频率、疲劳性以及疲劳后恢复过程均未发生改变。以上结果提示,增加刺激频率可对悬吊1与2周大鼠SOL强直收缩最大张力的降低有代偿作用,但不能代偿悬吊4周大鼠SOL最大收缩张力的降低,亦不影响悬吊大鼠SOL间断强直收缩疲劳性的增加与疲劳后恢复的减缓。  相似文献   

2.
Yu ZB  Jiao B  Wang YY  Li H 《生理学报》2008,60(3):362-368
甲状腺功能亢进(甲亢)时甲状腺素分泌增加,不仅使具有神经支配的慢缩型肌纤维向快缩型转化,而且改变骨骼肌的强直收缩功能.因此,甲亢性肌病的肌肉乏力可能与骨骼肌强直收缩易发生疲劳有关.本实验在离体条件下,观测甲亢4周引起的大鼠慢缩肌--比目鱼肌(soleus, SOL)单收缩与间断强直收缩功能的变化.结果显示,甲亢4周大鼠体重明显低于同步对照组[(292±13)g vs (354±10)g],但SOL湿重没有明显改变[(107.3±8.6)mg vs (115.1±6.9)mg].甲亢大鼠SOL单收缩张力达到峰值的时间(time to peak tension, TPT)、从峰值降至75%舒张时间(time from peak tension to 75% relaxation, TR75)均明显缩短;强直收缩的TR75也明显缩短[(102.8±4.1)ms vs (178.8±15.8)ms];强直收缩的最适频率从对照组的100Hz增加到140Hz;间断强直收缩期间容易发生疲劳.甲亢大鼠SOL肌浆网Ca2 -ATP酶(sarcoplasmic-reticulum Ca2 -ATPase, SERCA)活性增高.采用SERCA特异性抑制剂CPA (1.0μmol/L)处理后,对照组与甲亢大鼠SOL间断强直收缩的TR75均延长,同时不易出现疲劳.5.0μmol/L CPA灌流虽可进一步抵抗甲亢大鼠SOL间断强直收缩引起的疲劳,但强直收缩期间的静息张力却明显升高.将CPA浓度增至10.0μmol/L,甲亢大鼠SOL间断强直收缩又趋向易发生疲劳.这些结果提示,与心肌相同,骨骼肌肌纤维SERCA活性亦可影响单收缩与强直收缩的舒张时间,SERCA活性升高可加速间断强直收缩发生疲劳.  相似文献   

3.
库容性Ca2+内流参与ACh诱导的大鼠远端结肠平滑肌收缩   总被引:2,自引:0,他引:2  
Kong DH  Zhou H  Song J  Ke DP  Hu JL  Li ZW  Ma R 《生理学报》2006,58(2):149-156
应用生物换能技术和Ca^2+通道特异性阻断剂观察并记录大鼠离体远端结肠平滑肌收缩张力的变化,分析库容性Ca^2+内流(capacitative Ca^2+ entry,CCE)是否与ACh诱导的离体远端结肠平滑肌收缩反应有关。结果表明,以无钙的Krebs液灌流或应用EGTA螯合细胞外Ca^2+后,高K^+及ACh引起的远端结肠平滑肌收缩几乎完全消失。电压操纵性Ca^2+通道阻断剂verapamil也能减弱高K^+及ACh引起的远端结肠平滑肌收缩,其减弱的程度分别为74%和41%。在无钙的Krebs液中,5μmol/LACh可引起离体肠管瞬时性收缩,这是由肌质网(sarcoplasmic reticulum,SR)释放钙所致:然后加入10μmol/L阿托品(atropine),并在此基础上恢复细胞外Ca^2+(2.5mmol/L),结肠平滑肌则出现持续性收缩,待收缩反应达峰值时,加入5μmol/L verapamil,收缩无明显变化,且该收缩反应对钙库操纵性通道(store-operated Ca^2+ channel,socc)阻断剂La^3+敏感,20,50和100μmol/L的La^3+使上述收缩张力分别降低15%,23%和36%,且呈浓度依赖性,但对Cd^2+不敏感。研究结果提示,细胞外Ca^2+内流对高K^+及ACh介导的离体远端结肠平滑肌持续性收缩是必需的,由ACh诱导的远端结肠平滑肌收缩至少包括SR释放钙引起的短暂性收缩及受体操纵性Ca^2+通道(receptor-operated Ca^2+ channel,ROCC)、电压操纵性Ca^2+通道(voltage-operated Ca^2+ channel,VOCC)和CCE介导的胞外Ca^2+ 内流等途径。这将从通道水平进一步分析消化管平滑肌收缩的机制和特征,亦将为预防和控制因胃肠动力紊乱所致的消化管疾病寻求有针对性的药物干预和治疗提供理论依据。  相似文献   

4.
目的:探讨去负荷后小鼠比目鱼肌的收缩特性与骨骼肌纤维类型转化之间的关系。方法:采用离体肌肉灌流技术和电刺激方法,在小鼠后肢去负荷28 d引起骨骼肌萎缩后,观察比目鱼肌单收缩、强直收缩能力和肌疲劳指标等收缩特性的改变,同时利用组织免疫荧光染色和实时定量聚合酶链式反应(real-time PCR)等技术检测去负荷后比目鱼肌快慢肌纤维组成和纤维类型转化的变化。结果:去负荷28 d后,小鼠比目鱼肌单收缩力、强直收缩能力和疲劳指数(fatigue index)均有显著性下降,同时伴有快肌纤维亚型的增加和慢肌纤维亚型的减少。结论:去负荷28 d后小鼠比目鱼肌收缩特性的改变和快慢肌纤维类型的转化有关。  相似文献   

5.
Zhang SY  Liu G  Wang DL  Guo XJ  Qian GS 《生理学报》2001,53(3):219-223
研究不同频率慢性电刺激(CES)后兔膈肌肌浆网(SR)Ca^2 -ATPase活性以及SRC^2 摄取-释放动力学对不同频率CES的活应性变化,建立不同频率CES组,用定磷法测定SR Ca^2 -ATPaes活性,用Fura-2荧光法测定SR Ca^2 摄取-释放动力学,与对照组比较,慢性低频电刺激10Hz和20Hz组的SR Ca^2 -ATPase活性明显降低(P<0.01),Ca^2 释放-摄动力学也显著降低(P<0.01),慢性高频电刺激50Hz和100Hz组的SRCa^2 -ATPase活性则显著升高(P<0.01),Ca^2 释放-摄取动力学亦明显升高(P<0.01),实验提示,ECS后不同频率CES导致膈肌SRCa^2 -ATPase,Ca^2 摄取-释放动力学产生不同的适应性变化,对不同功能状态的膈应用不同频谱的慢性电刺激可能具有重要的临床意义。  相似文献   

6.
白细胞介素-2对大鼠心肌Ca2+ATPase和Na+ /K+ATPase的影响   总被引:3,自引:0,他引:3  
Cao CM  Xia Q  Fu C  Jiang HD  Ye ZG  Shan YL  Chan JZ 《生理学报》2003,55(1):83-90
为了探讨IL-2对心肌细胞内钙影响的可能机制,用光学法检测心肌肌浆网Ca^2 ATPase的活性,以及细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性。结果:(1)用IL-2(10、40、200、800U/ml)灌流心脏后,其肌浆网Ca^2 ATPase的活性随IL-2浓度的升高而增强;(2)在ATP浓度为0.1-4mmol/L时,Ca^2 ATPase的活性随ATP浓度的升庙则增强,由IL-2(200U/ml)灌流后的心脏获得肌浆网(SR),其Ca^2 ATPase的活性对ATP的反应强于对照组;(3)在[Ca^2 ]为1-40μmol/L时,心脏SR Ca^2 ATPase的活性随[Ca^2 ]增加而增强,而IL-2灌流心脏后分离的SR,其Ca^2 ATPase活性在[Ca^2 ]升高时没有明显改变;(4)用nor-BNI(10nmol/L)预处理5min后,IL-2(200U/ml)灌流后不再使SR Ca^2 ATPase的活性增强;(5)用PTX(5mg/L)预处理后,IL-2对SR Ca^2 ATPase的影响减弱;(6)用磷脂酶C(PLC)抑制剂U73122(5μmol/L)处理后,IL-2不再使SR Ca^2 ATPase活性增高;(7)用IL-2直接处理从正常大鼠分离的SR后,对SR Ca^2 ATPase活性无明显影响;(8)IL-2灌流后,对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase活性没有显著。上述结果表明,IL-2灌流心脏后使心肌肌浆网Ca^2 ATPase的活性增加,心肌细胞膜上的κ-阿片受体及其下游的G蛋白和PLC介导了IL-2的作用。尽管IL-2提高SR Ca^2 ATPase对ATP的反应性,但却抑制SR Ca^2 ATPase对钙离子的敏感性。IL-2对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性无明显影响。  相似文献   

7.
在低浓度皂素(50μg/ml)制备的浆膜蜕变(通透性增高)而肌浆网(SR)膜无损的蜕膜心肌标本上,以其收缩的幅度作为SRCa(2 )释放的半定量指标;高浓度皂素(500μg/ml)制备的浆膜和SR膜均蜕变的蜕膜心肌标本,以其张力-PCa关系曲线以及产生50%最大张力所需的Ch(2 )浓度(PCa50)分别作为肌钙蛋白(TN)Ca(2 )敏感性的定性和定量指标。结果观察到:(1)在低浓度皂素蜕膜心肌标本上,5和10mmol/L咖啡因分别引起约89.2±12.7和142.5±17mg(n=4,P<0.05)张力的强直收缩,而5mmol/L茶碱未能引起明显的强直收缩;(2)在高浓度皂素蜕膜心肌标本上,5和10mmol/L咖啡因及5mmol/L茶碱均使张力-pCa关系曲线左移;PCa50较对照分别增加了0.261,0.274和0.212PCa单位(P均小于0.001)。上述结果提示:咖啡因和茶碱均能增高TNCa(2 )敏感性;此外,咖啡因尚有促使SR释放Ca(2 )的作用。  相似文献   

8.
目的:研究腺苷对豚鼠心室肌细胞内游离钙浓度([Ca^2+]i)的影响并探讨其可能机制。方法:用激光共聚焦显微镜探测细胞内游离钙浓度,结果用相对荧光强度((FI-FI0)/FI0,%;FI0:对照;FI:给药)表示。结果:①在正常台氏液和无钙台氏液中,腺苷(10,50,100μmol/L)浓度依赖性地降低[Ca^2+];。②含30mmol/L KCl的台氏液(高钾台氏液)能够增加[Ca^2+]i。腺苷(10,50,100μmol/L)能够显著抑制KCl引起的[Ca^2+]i的增加。③预先应用选择性腺苷AI受体拮抗剂DPCPX(1μmol/L),可大部分取消腺苷(100μmol/L)在高钾台氏液中的作用。腺苷(100μmol/L)在高钾台氏液的作用也可被预先应用一氧化氮(No)合酶抑制剂L-NAME(1mmol/L)所部分减弱。④腺苷(100μmol/L)能明显抑制无钙台氏液中由低浓度ryanodine引起的[Ca^2+];增加。⑤当细胞外液钙浓度由1mmol/L增加到10mmol/L而诱发心室肌细胞钙超载时,部分心室肌细胞产生可传播的钙波,腺苷(100μmol/L)可降低钙波发生的频率和持续时间,最终阻断钙波并降低[Ca^2+];。结论:腺苷可通过抑制外钙内流和减少肌浆网内钙释放从而降低[Ca^2+],其减少外钙内流可能是由于腺苷A1受体介导的电压依赖性Ca^2+通道的抑制,NO可能参与这一过程。  相似文献   

9.
兴奋-收缩偶联(E—C coupling)依赖纽胞膜二氢吡啶受体(DHPR)/L型电压门控Ca^2+通道和肌浆网兰诺定受体(RyR)/Ca^2+释放通道的相互作用。在骨骼肌细胞中,DHPR与RyRl在结构上二机械偶联,不依赖细胞外Ca^2+即可激活RyRl;在心肌细胞中,去极化激活DHPR,细胞外Ca^2+内流,内流的Ca^2+通过钙诱导钙释放(CICR)机制激活RyR2。最近的研究表明,DHPR与RyR之间的信号转导通常是双向的。DHPR与RyR机械和化学的双向偶联机制调节这两种Ca^2+通道的效率、精确度和活性。  相似文献   

10.
目的:研究低镁介质致痫的培养海马神经元癫痫模型中神经元内游离钙离子([Ca^2+]i)的时空分布及其动力学改变,以探讨钙离子在癫痫发病过程中的作用。方法:联合应用共聚焦激光扫描显微镜和膜片钳,运用较高时间分辨率动态观察培养海马神经元癫痫模型[Ca^2+]i和电生理变化,以及化学门控钙离子通道阻滞剂的影响。结果:致痫后海马神经元胞浆和核内游离钙离子迅速上升到(612±65)nmol/L和(620±69)nmol/L水平,NMDA受体阻断剂MK-801(10μmol/L)和非NMDA受体阻断剂NBQX(10μmol/L)可使[Ca^2+]i的升高明显减少;升高的[Ca^2+]i恢复有明显的延迟现象,90min和150min癫痫样放电后[Ca^2+]i恢复的时间分别为(114.8±5.2)和(135.0±22.7)(P〈0.05)。结论:持续的癫痫样放电可导致海马神经元细胞内钙超载,这个效应可被MK-801阻断,化学门控钙离子通道也参与了细胞外Ca^2+内流的过程。  相似文献   

11.
Sarcolipin (SLN) is an inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) in vitro, but its function in vivo has not been defined. NF-SLN cDNA (SLN tagged N-terminally with a FLAG epitope) was introduced into rat soleus muscle in one hindlimb by plasmid injection and electrotransfer. Western blotting showed expression and co-immunoprecipitation showed physical interaction between NF-SLN and SERCA2a. Contractile properties and SERCA2a function were assessed and compared with vector-injected contralateral soleus muscles. NF-SLN reduced both peak twitch force (P(t)) (123.9 +/- 12.5 versus 69.8 +/- 8.9 millinewtons) and tetanic force (P(o)) (562.3 +/- 51.0 versus 300.7 +/- 56.9 millinewtons) and reduced both twitch and tetanic rates of contraction (+dF/dt) and relaxation (-dF/dt) significantly. Repetitive stimulation (750-ms trains at 50 Hz once every 2 s for 3 min) showed that NF-SLN increased susceptibility to fatigue. These changes in contractile function were observed in the absence of endogenous phospholamban, and NF-SLN had no effect on either SERCA2a or SERCA1a expression levels. NF-SLN also decreased maximal Ca(2+) transport activity at pCa 5 by 31% with no significant change in apparent Ca(2+) affinity (6.36 +/- 0.07 versus 6.39 +/- 0.08 pCa units). These results show that NF-SLN expression impairs muscle contractile function by inhibiting SERCA function and diminishing sarcoplasmic reticulum Ca(2+) stores.  相似文献   

12.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

13.
Abnormalities in the excitation-contraction coupling of slow-twitch muscle seem to explain the slowing and increased fatigue observed in congestive heart failure (CHF). However, it is not known which elements of the excitation-contraction coupling might be affected. We hypothesize that the temperature sensitivity of contractile properties of the soleus muscle might be altered in CHF possibly because of alterations of the temperature sensitivity of intracellular Ca(2+) handling. We electrically stimulated the in situ soleus muscle of anesthetised rats that had 6-wk postinfarction CHF using 1 and 50 Hz and using a fatigue protocol (5-Hz stimulation for 30 min) at 35, 37, and 40 degrees C. Ca(2+) uptake and release were measured in sarcoplasmic reticulum vesicles at various temperatures. Contraction and relaxation rates of the soleus muscle were slower in CHF than in sham at 35 degrees C, but the difference was almost absent at 40 degrees C. The fatigue protocol revealed that force development was more temperature sensitive in CHF, whereas contraction and relaxation rates were less temperature sensitive in CHF than in sham. The Ca(2+) uptake and release rates did not correlate to the difference between CHF and sham regarding contractile properties or temperature sensitivity. In conclusion, the discrepant results regarding altered temperature sensitivity of contraction and relaxation rates in the soleus muscle of CHF rats compared with Ca(2+) release and uptake rates in vesicles indicate that the molecular cause of slow-twitch muscle dysfunction in CHF is not linked to the intracellular Ca(2+) cycling.  相似文献   

14.
The effects of high myoplasmic L-lactate concentrations (20-40 mM) at constant pH (7.1) were investigated on contractile protein function, voltage-dependent Ca(2+) release, and passive Ca(2+) leak from the sarcoplasmic reticulum (SR) in mechanically skinned fast-twitch (extensor digitorum longus; EDL) and slow-twitch (soleus) fibers of the rat. L-Lactate (20 mM) significantly reduced maximum Ca(2+)-activated force by 4 +/- 0.5% (n = 5, P < 0.05) and 5 +/- 0.4% (n = 6, P < 0.05) for EDL and soleus, respectively. The Ca(2+) sensitivity was also significantly decreased by 0.06 +/- 0. 002 (n = 5, P < 0.05) and 0.13 +/- 0.01 (n = 6, P < 0.001) pCa units, respectively. Exposure to L-lactate (20 mM) for 30 s reduced depolarization-induced force responses by ChCl substitution by 7 +/- 3% (n = 17, P < 0.05). This inhibition was not obviously affected by the presence of the lactate transport blocker quercetin (10 microM), or the chloride channel blocker anthracene-9-carboxylic acid (100 microM). L-Lactate (20 mM) increased passive Ca(2+) leak from the SR in EDL fibers (the integral of the response to caffeine was reduced by 16 +/- 5%, n = 9, P < 0.05) with no apparent effect in soleus fibers (100 +/- 2%, n = 3). These results indicate that the L-lactate ion per se has negligible effects on either voltage-dependent Ca(2+) release or SR Ca(2+) handling and exerts only a modest inhibitory effect on muscle contractility at the level of the contractile proteins.  相似文献   

15.
The neural message is known to play a key role in muscle development and function. We analyzed the specific role of the afferent message on the functional regulation of two subcellular muscle components involved in the contractile mechanism: the contractile proteins and the sarcoplasmic reticulum (SR). Rats were submitted to bilateral deafferentation (DEAF group) by section of the dorsal roots L(3) to L(5) after laminectomy. Experiments were carried out in single skinned fibers of the soleus muscle. The maximal force developed by the contractile proteins was increased in the DEAF group compared with control, despite a decrease in muscle mass by 17%. The tension-pCa relationship was shifted toward lower calcium (Ca(2+)) concentrations. Different functional properties of the SR of DEAF soleus were examined by using caffeine-induced contractions. The caffeine sensitivity of the Ca(2+) release was decreased after deafferentation and ryanodine receptor 1 isoform was expressed at a lower level. The rate of Ca(2+) uptake was only slightly increased. The results underlined the dual effect of the afferent input on the functional regulation of both contractile proteins and SR.  相似文献   

16.
Fatigue was studied in intact tibialis anterior muscle of anesthetized mice. The distal tendon was detached and connected to a force transducer while blood flow continued normally. The muscle was stimulated with electrodes applied directly to the muscle surface and fatigued by repeated (1 per 4 s), brief (0.4 s), maximal (100-Hz stimulation frequency) tetani. Force declined monotonically to 49 ± 5% of the initial value with a half time of 36 ± 5 s and recovered to 86 ± 4% after 4 min. Intracellular phosphate concentration ([P(i)]) was measured by (31)P-NMR on perchloric acid extracts of muscles. [P(i)] increased during fatigue from 7.6 ± 1.7 to 16.0 ± 1.6 mmol/kg muscle wet wt and returned to control during recovery. Intracellular Ca(2+) was measured with cameleons whose plasmids had been transfected in the muscle 2 wk before the experiment. Yellow cameleon 2 was used to measure myoplasmic Ca(2+), and D1ER was used to measure sarcoplasmic reticulum (SR) Ca(2+). The myoplasmic Ca(2+) during tetani declined steadily during the period of fatigue and showed complete recovery over 4 min. The SR Ca(2+) also declined monotonically during fatigue and showed a partial recovery with rest. These results show that the initial phase of force decline is accompanied by a rise in [P(i)] and a reduction in the tetanic myoplasmic Ca(2+). We suggest that both changes contribute to the fatigue. A likely cause of the decline in tetanic myoplasmic Ca(2+) is precipitation of CaP(i) in the SR.  相似文献   

17.
Efforts to examine the relevant mechanisms involved in skeletal muscle fatigue are focusing on Ca(2+) handling within the active muscle cell. It has been demonstrated time and again that reductions in sarcoplasmic reticulum (SR) Ca(2+) release resulting from increased or intense muscle contraction will compromise tension development. This review seeks to accomplish two related goals: 1) to provide an up-to-date molecular understanding of the Ca(2+)-release process, with considerable attention devoted to the SR Ca(2+) channel, including its associated proteins and their regulation by endogenous compounds; and 2) to examine several putative mechanisms by which cellular alterations resulting from intense and/or prolonged contractile activity will modify SR Ca(2+) release. The mechanisms that are likely candidates to explain the reductions in SR Ca(2+) channel function following contractile activity include elevated Ca(2+) concentrations, alterations in metabolic homeostasis within the "microcompartmentalized" triadic space, and modification by reactive oxygen species.  相似文献   

18.
The purpose of the study was to characterize the sarcoplasmic reticulum (SR) function and contractile properties before and during recovery from fatigue in the rat extensor digitorum longus muscle. Fatiguing contractions (60 Hz, 150 ms/s for 4 min) induced a reduction of the SR Ca(2+) release rate to 66% that persisted for 1 h, followed by a gradual recovery to 87% of prefatigue release rate at 3 h recovery. Tetanic force and rate of force development (+dF/dt) and relaxation (-dF/dt) were depressed by approximately 80% after stimulation. Recovery occurred in two phases: an initial phase, in which during the first 0.5-1 h the metabolic state recovered to resting levels, and a slow phase from 1-3 h characterized by a rather slow recovery of the mechanical properties. The recovery of SR Ca(2+) release rate was closely correlated to +dF/dt during the slow phase of recovery (r(2) = 0.51; P < 0.05). Despite a slowing of the relaxation rate, we did not find any significant alterations in the SR Ca(2+) uptake function. These data demonstrate that the Ca(2+) release mechanism of SR is sensitive to repetitive in vitro muscle contraction. Moreover, the results indicate that +dF/dt to some extent depends on the rate of Ca(2+) release during the slow phase of recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号