首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 280 毫秒
1.
本文用DFT计算方法研究了LiFexMn1-xPO4的热力学稳定性和嵌/脱锂电位. 结果表明,LiFexMn1-xPO4固溶体的自由能比相分离的LiFePO4/LiMnPO4混合物略高,这两种形式可能在实际LiFexMn1-xPO4材料中共存. 计算表明,LiFexMn1-xPO4固溶体的嵌/脱锂电位随锰/铁比以及过渡金属离子的空间排列而变化,并用计算结果解释了放电曲线的形状. 采用固相反应法合成了LiFexMn1-xPO4材料并研究了其电化学性质,实验中观察到附加的放电平台,其出现可能与LiFexMn1-xPO4固溶体的存在有关.  相似文献   

2.
通过在碱液中共沉淀Mn2+、Ni2+和Fe2+后制备了棒状的前躯体,前躯体于不同温度煅烧后制得了MnxNi0:5-xZn0:5Fe2O4棒状体. 利用X射线衍射仪和透射电镜对棒状体的物相、形貌及粒径进行了表征,并利用振动样品磁强计对磁性能进行研究. 结果表明长径比大于15的棒状,随着x值的增加,MnxNi0:5-xZn0:5Fe2O4样品的直径增加,长度下降,长径比变小,当x=0.5时其直径在50 nm左右而长径比减小到7~8. 随着x值的增加,样品的矫顽力先增加后减少,x值达到0.4时样品的矫顽力再次增加,当煅烧温度为600 oC,x=0.5时样品的矫顽力最大为134.3 Oe. 饱和磁化强度随着x值的增加先增加后减少,当煅烧温度为800 oC和x=0.2时达到最大为68.5 Oe.  相似文献   

3.
陈宣  袁勇波  邓开明  肖传云  陆瑞锋  阚二军 《物理学报》2012,61(8):83601-083601
采用密度泛函方法,研究了MnxSny(x=2,3,4; y=18,24,30)团簇的几何结构. 发现MnxSn6x+6(x=2,3,4)倾向于形成 Mn 原子内掺入D3d Sn团簇单笼结构,即Mn2Sn18, Mn3Sn24 和Mn4Sn30.而MnxSn6x+12(x=2,3)则倾向于形成由两个小笼连接 而成的双笼结构,即MnSn12-MnSn12 和MnSn12-Mn2Sn18.因此,可望通过控制掺杂Mn 原子的数量来组装成不同结构的MnxSny一维纳米线.  相似文献   

4.
刘国磊  敬超  吴镝  吴义政  董国胜  金晓峰 《物理学报》1999,48(12):2369-2376
Co1-xMnx合金的磁性强烈地依赖于其结构以及Mn的相对含量.从第一性原理出发,用线性缀加平面波(LAPW)方法,分别计算了x=0.00,0.25,0.50,0.75,1.00的情况下,面心立方(fcc)和体心立方(bcc)结构的Co1-xMnx合金的电子结构和基态磁性.随x的增大,fcc结构的Co1-xMnx合金的磁性从铁磁性和亚铁磁性变为反铁磁性;bcc结构Co相似文献   

5.
利用传统的固相反应法制备了BiFe1-xMnxO3 (x= 0-0.20)陶瓷样品, 研究了不同Mn4+掺杂量对BiFeO3陶瓷密度、物相结构、显微形貌、 介电性能和铁电性能的影响.实验结果表明:所制备的BiFe1-xMnxO3 陶瓷样品的钙钛矿主相均已形成,具有良好的晶体结构, 且在掺杂量x=0.05附近开始出现结构相变.随着Mn4+添加量的增加, 体系的相结构有从菱方钙钛矿向斜方转变的趋势,且样品电容率大幅度增大, 而介电损耗也略有增加;在测试频率为104 Hz条件下, BiFe0.85Mn0.15O3 (εr=1065)的 εr是纯BiFeO3 (εr=50.6)的22倍; 掺杂后样品的铁电极化性能均有不同程度的提高,可能是由于Mn4+稳定性优于 Fe3+,高价位Mn4+进行B位替代改性BiFeO3陶瓷, 能减少Bi3+挥发,抑制Fe3+价态波动,从而降低氧空位浓度,减小样品的电导和漏电流.  相似文献   

6.
高潭华  刘慧英  张鹏  吴顺情  杨勇  朱梓忠 《物理学报》2012,61(18):187306-187306
采用基于密度泛函理论的第一性原理方法, 在广义梯度近似(GGA)和GGA+U方法下对尖晶石型LiMn2O4及其Al掺杂 的尖晶石型LiAl0.125Mn1.875O4晶体的结构和电子性质进行了计算. 结果表明: 采用GGA方法得到尖晶石型LiMn2O4是立方晶系结构, 其中的Mn离子为+3.5价, 无法解释它的Jahn-Teller 畸变. 给出的LiMn2O4能带结构特征也与实验结果不符. 而采用GGA+U方法得到在低温下的LiMn2O4和其掺杂 体系LiAl0.125Mn1.875O4的晶体都是正交结构, 与实验一致. 也能明确地确定Mn的两种价态Mn3+/Mn4+的分布并且能够说明Mn3+O6z方向有明显的Jahn-Teller 畸变, 而Mn4+O6则没有畸变. LiMn2O4的能带结构与实验比较也能够符合. 采用GGA+U方法对Al掺杂体系的LiAl0.125Mn1.875O4的研究表明, 用Al替换一个Mn不会明显地改变晶体的电子性质, 但可以有效地消除Al3+O6 八面体的Jahn-Teller畸变, 从而改善正极材料LiMn2O4的性能, 这与电化学实验的观察结果相一致.  相似文献   

7.
利用XRD和XAFS技术研究了淬火速度为20m/s的退火和未退火Nd9Fe85-xB6Mnx(x=0.5,1.0)样品的长程序结构和局域结构.结果表明:初始制备样品,微量Mn原子的掺杂有利于纳米复合Nd-Fe-B磁性材料中Nd2Fe14B硬磁相和α-Fe软磁相的结晶度增加,而随着Mn掺杂量的增加,Fe原子周围配位有序度升高;退火后,掺杂微量的Mn元素并没有进一步提高Nd9Fe85-xB6Mnx样品的结晶度,也没有生成新的物相.本文提出,在快淬制备过程中,微量的Mn原子进入纳米复合Nd-Fe-B磁性材料的磁体主相形成亚稳相;退火处理后,Mn原子退出初始的磁体主相而进入颗粒的晶界.  相似文献   

8.
在原位聚合合成方法的基础上,结合两步烧结过程制得LiFe1-xVx(PO4)(3-y)/3Fy/C.V和F掺杂对碳包覆的磷酸铁锂材料的结构、形貌和电化学性能有影响.通过XRD、FTIR、SEM、充/放电测试和电化学阻抗谱对材料的结构、形貌和电化学性能进行了表征.结果表明,V和F的掺杂并没有破坏橄榄石结构中的LiFePO4/C,但可以提高晶体结构的稳定,降低电荷的转移阻抗,提高锂离子扩散速度,改善了LiFePO4/C材料的循环性能和高倍率性能.  相似文献   

9.
张治国 《物理学报》2008,57(9):5823-5827
用反应蒸发法在玻璃等衬底上制备出铜和铟掺杂的氧化锡SnO2:(Cu,In)薄膜.对制备薄膜的发光性质做了研究,制备样品为非晶态,具无定形结构.测量了薄膜在220—1100nm范围的透过率,得到的带隙宽度Eoptg=4.645eV.室温条件下对样品进行光致发光测量,得到了显著的紫外(276—550nm)蓝绿光连续谱,通过发光谱的研究给出了这种材料的隙态分布.  相似文献   

10.
用溶剂热合成法在160oC制备出Zn1-xMnxO纳米棒和Zn1-2xMnxLixO纳米颗粒. XRD和拉曼测试结果表明Mn离子已很好地掺入ZnO母体中. M-H图中未观察到磁回滞,ESR谱中的精细结构说明掺杂的Mn离子间没有铁磁相互作用. 共掺Li仅仅改变了产物的形貌,并不能改变其磁学性质.  相似文献   

11.
The electronic properties of Mo-doped LiFePO4 and occupancy sites of Mo are investigated by employing the density functional theory plane-wave pseudopotential method. The calculated results show that Mo doping at Fe site has lower formation energy, which implies that Mo dopants prefer to occupy Fe sites within the LiFePO4 lattice. Furthermore, the LiFe1?3/12Mo1/12PO4 has wider lithium ion migration channels than Li1?6/12Mo1/12FePO4. For the case of LiFe1?3/12Mo1/12PO4, the calculated narrow band gap (0.18 eV) indicates that the electronic conductivity of LiFePO4 could be enhanced by doping Mo at the Fe sites. The density of states and charge densities of LiFe1?3/12Mo1/12PO4 demonstrate that the Mo-4d states and MoO bonding play important roles in band gap reduction of LiFe1?3/12Mo1/12PO4.  相似文献   

12.
《Solid State Ionics》2006,177(26-32):2617-2624
The paper presents the investigations on the structural, electrical and electrochemical properties of Mn substituted phospho-olivines LiFe1  yMnyPO4 and of W, Ti or Al doped LiFePO4. The microscopic nature of the observed macroscopic, metallic-like conductivity of W, Ti, Al doped phospho-olivine samples is discussed. Some fundamental arguments against the bulk type conductivity are presented.A single phase, diffusional mechanism of deintercalation was found to appear for Mn-substituted LiFe1  yMnyPO4 samples in the whole range of lithium concentration, in contrast to the pure LiFePO4, LiMnPO4 and W, Ti, Al doped phospho-olivines, where a two-phase mechanism of electrochemical lithium extraction/insertion is observed.  相似文献   

13.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   

14.
Atomic and electronic structures of LiFePO4 with the antisite defect and Mg doping at Li and Fe sites have been investigated using first-principles density-functional theory with the on-site Coulomb interaction taken into account. It is demonstrated that the most favorable antisite defect type is the exchange defect, in which Li and Fe ions exchange positions. The resultant longer Fe–O bond and narrower band gap drop a hint that the electronic and ionic transport properties may be improved. For the case of Mg doping, Mg is preferentially doped at the Fe site instead of the Li site to form a new LiFe1−y Mg y PO4 solid solution, leading to a higher ionic conductivity. Moreover, the dependence of the electrochemical properties on the concentration of Mg dopant has also been discussed.  相似文献   

15.
First-principles density functional theory approach is adopted to determine the electronic, magnetic and structural characteristics of the Mn2CoAs1xAlx (x = 0,0.25,0.50,0.75) Heusler alloys. The computations are carried out by WIEN2k code based on full-potential linearized augmented plane wave method (FP-LAPW). Moreover, the exchange-correlation energy functional is treated at the level of the generalized gradient approximation (GGA). Analysis of our computed results of the electronic band structure, as well as the density of states of the Mn2CoAs compound, show it a stable and half-metallic material with an energy band gap value of 0.48 eV. The calculated spin gap values are: 0.627 eV, 0.22 eV and 0.188 eV for Mn2CoAs0.75Al0.25, Mn2CoAs0.50Al0.50 and Mn2CoAs0.25Al0.75 respectively. Furthermore, the calculated total magnetic moment of the Mn2CoAs (4 µB) is found to be in agreement with the Slater–Pauling rule. Thus, our calculations show the Mn2CoAs1xAlx (x = 0, 0.25, 0.50, 0.75) Heusler alloys potential materials for near future applications in spintronic because of their half-metallic ferromagnetism property.  相似文献   

16.
A series of carbon-coated LiFe1???x Mn x PO4 compounds are prepared by a hydrothermal method at 170 °C for 12 h. The structure and morphology of the prepared composites are characterized to examine the effects of Mn2+ substitution. All LiFe1???x Mn x PO4 compositions are found to have an ordered olivine-type structure with homogeneous Fe2+ and Mn2+ distributions. The substitution leads to grain refinement from ~500 to ~150 nm, as well as to increased initial capacity and improved electronic conductivity. The amount of carbon coating varies with increased doping amount. The discharge curves of the LiFe1???x Mn x PO4/C materials reveal a high discharge plateau corresponding to Fe2+/3+ and no obvious plateau assigned to Mn2+/3+, although a slight contribution of manganese is detected. However, the electrochemical performance, including the discharge capacity and cyclic performance, deteriorates with increased Mn content in the composite.  相似文献   

17.
The olivine-type LiFe1-x Y x PO4/C (x?=?0, 0.01, 0.02, 0.03, 0.04, 0.05) products were prepared through liquid-phase precipitation reaction combined with the high-temperature solid-state method. The structure, morphology, and electrochemical performance of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy-dispersive spectroscopy (EDS), galvanostatic charge-discharge, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). We found that the small amount of Y3+ ion-doped can keep the microstructure of LiFePO4, modify the particle morphology, decrease charge transfer resistance, and enhance exchange current density, thus enhance the electrochemical performance of the LiFePO4/C. However, the large doping content of Y3+ ion cannot be completely doped into LiFePO4 lattice, but existing partly in the form of YPO4. The electrochemical performance of LiFePO4/C was restricted owing to YPO4. Among all the doped samples, LiFe0.98Y0.02PO4/C showed the best electrochemical performance. The LiFe0.98Y0.02PO4/C sample exhibited the initial discharge capacity of 166.7, 155.8, 148.2, 139.8, and 121.1 mAh g?1 at a rate of 0.2, 0.5, 1, 2, and 5 C, respectively. And, the discharge capacity of the material was 119.6 mAh g?1 after 100 cycles at 5 C rates.  相似文献   

18.
The local crystal structures and electronic structures of LiMxFe1-xPO4 (M = Co, Ni, Rh) are studied through first-principles calculations. The lattice constants and unit cell volumes are smaller for the Co and Ni doped materials than for pure LiFePO4, while larger than for the Rh doped material. The local structures around M atoms in the doped materials are studied in details. The total density of states (DOS) and atomic projected DOS (PDOS) are all calculated and analysed in detail. The results give a reasonable prediction to the improvement of electronic conductivity through Fe-site doping in LiFePO4 material.  相似文献   

19.
The LiFe0.9Mg0.1PO4/C powder of pure olivine phase can be prepared with the duplex process of spray pyrolysis synthesis (at 450 °C) and subsequent heat treatment (at 700 °C for 2, 4 and 8 h). From scanning electron microscopy observation with corresponding elemental mapping images of iron, phosphorous and magnesium, it could be found that the LiFe0.9Mg0.1PO4 powders are covered with fine pyrolyzed carbon. Raman spectra indicate that the phase of carbon with higher electronic conductive phase is predominant when prolonged subsequent heat treatment is carried out. The carbon coatings on the LiFe0.9Mg0.1PO4 surface can improve the conductivity of the LiFe0.9Mg0.1PO4 powder (3.8×10−5 S cm−1) to about a factor of ∼104 higher than the conductivity of LiFePO4. The stability and cycle life of a charge/discharge cycle test of lithium ion secondary batteries are also enhanced. The results indicate that the LiFe0.9Mg0.1PO4 powder, prepared at a pyrolysis temperature of 450 °C and with post-heat-treatment at 700 °C for 8 h, exhibits a specific initial discharge capacity of about 132 mA h g−1 at C/10 rate, 105 mA h g−1 at 1C, and 87 mA h g−1 at 5C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号