首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
金属-有机框架(MOFs)材料具有容易制备、高孔隙率、容量大、种类丰富等优点,在能源储存和转化领域受到广泛关注,是合成高性能电极材料的潜在模板.本文介绍MOFs直接应用于锂离子电池正极材料的研究进展,重点综述了MOFs衍生材料(硫化物、氟化物、聚阴离子型化合物或锂的过渡金属酸盐)的制备方法,及其在锂离子电池正极中的应用.最后总结MOFs及其衍生材料在锂离子电池正极材料的应用方向及发展前景,为新型电极材料的开发提供参考经验.  相似文献   

2.
张彬彬  李雨竹  杨成  邓昭 《科学通报》2019,64(32):前插11,3371-3377
基于锂离子电池在循环过程中产生的体积效应严重影响整个电池的循环稳定性的问题,本研究设计了一种利用聚吡咯包覆金属有机框架的简单方法,来合成蛋黄壳结构的碳包覆氧化锰材料,并用于锂离子电池的负极材料.所制备的碳包覆氧化锰纳米颗粒在锂离子电池充放电过程中表现出良好的比容量,在0.1, 0.5和2 A g~(–1)的电流密度下分别表现出723, 651, 374 m Ah g~(–1)的比容量.在具有优异的倍率性能的同时,该材料还具有优异的稳定性.在上述3个电流密度下,该材料循环200圈后容量没有明显的衰减.该纳米结构MnO_x的制备方法和电化学理解也可以推广到其他过渡金属氧化物,最终实现高性能的锂离子电池.  相似文献   

3.
近年来,多孔材料因具有较高的比表面积、较低的相对密度以及较好的吸附性能等吸引了化学、物理以及材料等领域科研人员的研究兴趣,已被广泛应用于气体储存、吸附催化和电化学等方面.金属有机骨架(MOFs)材料作为近年来迅猛发展的新兴多孔材料,由于具有有序、规整的结构,较高的比表面积以及结构可调等特性,使其较传统多孔材料具有更诱人的应用前景.然而,由于MOFs具有相对较差的稳定性,其实际应用和发展受到了很大的限制.为了进一步推进MOFs材料的应用进程,可利用MOFs材料受热易分解的缺点,将其高温煅烧碳化制备稳定的纳米多孔碳材料.本文综述了MOFs作为牺牲模板煅烧制备纳米多孔碳材料的方法及其应用,并且展望了其在能源、环境以及催化方面的应用前景.  相似文献   

4.
纳米多孔碳材料因其丰富的空隙、大比表面积及易于设计等特点在工业上展现出巨大的应用潜力,而通过调控其组成结构以获得更优的性能并实现制备成本的控制一直是研究的重点.金属有机框架(MOFs)作为一种新型的晶态多孔材料,具有组成可调、结构多样、孔径可控等特点,在催化、能量储存和转化、气体储存、环境修复等诸多方面受到了广泛的关注.特别地,基于MOFs的结构与组成,MOFs被用作制备各种形式的纳米多孔碳材料以及新的多功能碳基复合材料的通用前体,与单个组件组装的复合材料相比,它往往表现出更优越的功能特性.本文综述了近年来采用MOFs热解的方法制备多孔碳材料的设计原理和策略,为获得高性能多孔碳及其复合材料提供借鉴并给出了未来的发展前景和挑战.  相似文献   

5.
《科学通报》2021,66(27):3590-3603
气体的吸附与分离对于减缓温室效应、普及清洁能源以及治理挥发性有机物(volatile organic compounds,VOCs)而言都显得尤为重要.以金属有机骨架材料(metal organic frameworks, MOFs)为前驱体制备多孔碳材料不仅克服了某些MOFs材料水稳定性和热稳定性差的缺点,还有效地保留了MOFs材料比表面积高、孔径可调等优点,在气体吸附与分离领域具有良好的应用前景.本文介绍了MOFs基多孔碳材料的研究现状,重点探究了MOFs基多孔碳材料在气体(二氧化碳、氢气和挥发性有机物)吸附与分离领域的应用情况,并展望了MOFs基多孔碳材料在气体吸附与分离领域的发展方向,为将其更好地应用于气体吸附与分离领域提供了有价值的理论参考.  相似文献   

6.
《科学通报》2021,66(23):2971-2990
金属锂负极因其超高的理论比容量和极低的氧化还原电势成为下一代可充电池的"圣杯"负极材料,高能量密度的锂金属电池有望成为后锂离子电池时代最具商业应用潜力的电化学储能系统.但是负极锂枝晶的生长带来了极大的安全隐患,"死锂"的积累和电解质的过度消耗造成了电池循环稳定性的下降,这些严重阻碍了锂金属电池的商业应用.近年来,国内外学者通过电极结构设计、固态电解质、隔膜修饰、保形包覆、添加剂等手段有效抑制了枝晶的生长.本文着重介绍了功能性添加剂和保形包覆两种策略的成功实例,通过在负极-电解质界面处注入富氟成分或引入亲锂性基团以均匀化锂离子流,从而实现稳定且无枝晶的负极循环,为锂金属电池的发展提供有益的见解.  相似文献   

7.
《科学通报》2021,66(20):2555-2572
功能化隔膜对于锂二次电池的安全性能和电化学性能有着重要影响.相比于其他改性传统聚烯烃隔膜的材料,二维材料具有超薄的片层结构、高机械强度、高比面积以及可调的表面化学性质等优势.本文综述了不同类型二维材料功能化隔膜在解决锂硫电池中多硫化物的穿梭效应、锂金属电池中负极枝晶生长问题,以及锂离子电池中传统聚烯烃隔膜润湿性和热稳定差等问题的研究进展.最后,讨论了二维材料在锂电池隔膜中面临的机遇和挑战.  相似文献   

8.
近年来,单原子分散的金属催化剂(ADMCs)以其最大的原子利用效率(100%),独特的活性位点,较高的催化活性、稳定性和选择性在电催化领域引起广泛关注。金属有机骨架(MOFs)具有明确的分子结构块、可调的官能团和有效的配位,目前已成为制备ADMCs的潜在支撑材料。文章主要介绍近年来MOFs衍生的纳米材料用于ADMCs的开发情况及其在电化学催化氧还原反应方面的应用。还讨论了ADMCs在该领域研究所取得的重要进展,以及面临的挑战和机遇。  相似文献   

9.
锂离子电池作为新一代储能装置,已经在生产和生活中得到了广泛应用.多酸有着多电子转移、化学结构稳定、氧化还原性可逆等诸多优点,具有作为电池电极材料的良好潜力.但易溶于电解液、导电性差且易发生团聚等问题阻碍了多酸用于电池电极材料的应用研究.本工作为解决上述问题,充分利用磷钼酸良好的水溶性、优异的氧化还原性和独特的酸性,通过简单的一锅法,在温和的条件下制备了磷钼酸/聚吡咯/石墨烯前驱体(PMo12/PPy/RGO,简称PCG),并通过高温氨化处理制备了新型氮化钼基复合材料(NPC@Mo2N/NPRGO),磷钼酸、聚吡咯在提供金属源和碳源的同时也提供了P,N杂原子掺杂到多孔碳和石墨烯中,该材料作为锂离子电池负极材料表现出较好的循环性能和倍率性能.在电流密度为100m A/g时,NPC@Mo2N/NPRGO的首周放电比容量可以达到1446 mAh/g,循环200周后仍然可以达到771 mAh/g.在电流密度为100, 200, 500, 1000, 2000 mA/g时,循环比容量分别为797,725,630,545,460m Ah/g.尤其是在大电流密度(1000m A/g)循环300周后容量仍能达到554mAh/g.  相似文献   

10.
施可飞  杨皓景  连跃彬  彭扬 《科学通报》2019,64(32):前插12,3378-3384
锌-空气电池作为一种兼具成本低、容量高、环境友好等优点的高效储能器件,具有1084 Wh/kg的理论能量密度,甚至高于传统锂离子电池.锌-空气电池主要受限于其空气电极材料氧还原(ORR)和析氧反应(OER)缓慢的动力学,因此大量的研究都集中在如何优化其催化活性上.目前应用最广泛的ORR和OER的催化剂分别是Pt/C和RuO2,但是其高昂的价格和稀缺性使其应用受限.金属有机框架(MOF)是金属阳离子或阳离子团簇与有机配体配位形成的配位聚合物,具有高比表面积与结构可调控性等优势,经高温煅烧后可以获得结构各异且异原子掺杂(例如氮掺杂)的碳化物材料,展现了优良的ORR和OER催化活性,成为电催化领域的研究热点.类普鲁士蓝是一种典型的MOF材料,具有成分易调控、合成方法简单等优点.本研究通过氢氧化钴纳米棒的原位转化制备负载在泡沫镍上的钴铁双金属类普鲁士蓝,并以此为前驱体制备了氮掺杂钴铁双金属碳化物催化剂;使用扫描电子显微镜(SEM)、X光衍射(XRD)、X光电子能谱(XPS)等手段对样品进行表征;使用旋转圆盘电极、线扫描等测试材料研究其对ORR和OER催化性能的影响.结果表明,所制备的氮掺杂钴铁双金属碳化物催化剂具备较好的ORR和OER活性.在0.1 mol/L KOH溶液中, ORR半波电位为0.81 V; 1.0 mol/L KOH中, OER电流密度达到10 mA/cm~2时,过电位为300 mV.该材料作为空气电极催化剂组装锌-空气电池,开路电压为1.29 V,且具备较好的稳定性和循环性.  相似文献   

11.
王江艳  唐红杰  王丹 《科学通报》2019,64(34):3623-3631
采用硬模板方法,以碳微球为模板,通过调控铬盐前驱体在模板上的吸附时间以及碳球模板的尺寸,来控制铬金属前驱体在碳球模板上的吸附量及嵌入深度,煅烧制备得到单、双、三、四以及五壳层Cr_2O_3空心球.合成的多壳层Cr_2O_3空心球尺寸均匀、纯度高、结晶性好.将Cr_2O_3多壳层空心球用作锂离子电池负极材料,相对于Cr_2O_3纳米颗粒其电池性能取得了显著的提升,具体表现在比容量更高,循环稳定性更好,且大电流放电能力更出色.其优异的性能主要得益于多壳层空心结构较大的比表面积、较短的离子/电子传输距离,且其内部空腔能起到缓冲由于锂离子反复嵌入引起的结构应力以及电极体积膨胀的作用.值得注意的是,四壳层Cr_2O_3空心球由于具有最佳的空腔体积占有率,其锂电性能最为突出,在100次循环后,比容量仍然高达1031.2 mAh/g,是目前商业石墨负极材料的3倍,有望用作新一代高性能锂离子电池负极材料.  相似文献   

12.
《科学通报》2021,66(9):1046-1056
锂金属由于其具有极高的理论比容量、较低的密度和极低的氧化还原电位等特性,是实现下一代高比能锂电池的理想负极材料.然而,在锂金属电池实际充放电循环过程中,锂金属负极表面易产生枝晶状结构锂,这些锂枝晶不仅能够引起锂金属电池的安全隐患,而且极大地降低锂金属电池的库伦效率,缩短电池的使用寿命.这些问题严重阻碍了锂金属电池的应用发展.因此,充分认识锂枝晶的形成和生长机理,同时精确调控金属锂的电化学溶解/锂沉积过程,进而有效地抑制锂枝晶的形成生长,是实现下一代锂金属电池商业化应用的首要前提.本文综述了近年来锂枝晶生长理论与抑制方法的研究进展,在此基础上,从热力学与动力学角度加深对锂枝晶生长机理的认识,将为开发锂枝晶的抑制策略和加快锂金属电池的实用化提供科学理论借鉴.  相似文献   

13.
刘金云  刘锦淮 《自然杂志》2017,39(5):340-346
锂离子电池是一种典型的可充电电池,在储能技术领域占主导地位,应用极为广泛。近年来,科技发展对锂离子电池提出了更高要求,包括高能量密度、高安全稳定性等,驱动着电池材料与结构不断创新发展。研制石墨烯基复合正极负极材料,是极为活跃的方向。在此,对锂离子电池的结构、面临的突出挑战以及石墨烯基正极和负极材料研究前沿进行了介绍,重点围绕石墨烯增强电极材料电学特性的基本原理和复合材料制备技术作了阐述,也提出了未来发展动向。  相似文献   

14.
“双碳”背景下,钠离子电池因成本低廉、安全环保和性能优异等优点受到社会各界的重点关注.低成本的钠离子电池是锂离子电池的有益补充,并将在储能领域展现自己的独特优势,现阶段钠离子电池正处于由实验室探索到产业化推进的关键节点.本文简要介绍了钠离子电池的研究背景,重点介绍了中国科学院物理研究所在钠离子电池关键材料(正极、负极和电解质)、基础理论和工程化探索方面取得的重要进展,对钠离子电池的未来发展方向进行了展望,以期推动钠离子电池的持续发展,加速钠离子电池的商业化应用.  相似文献   

15.
马兴瑾  彭华龙  杨慧丽  刘崇波 《科学通报》2019,64(31):3188-3195
多孔碳材料由于其较高的比表面积、质轻、电磁衰减能力强等特点,作为吸波隐身材料获得科学家越来越多的关注.金属-有机骨架(MOFs)材料由于其有序规整的结构,以及结构和功能可设计性等优势而成为材料化学各个领域的研究热点. MOFs经高温煅烧可制备结构有序的多孔碳复合材料,近年来在电磁波吸收方面也有优异的表现.本文综述了基于MOFs的多孔碳复合材料作为微波吸波剂的吸波性能、优势、制备方法和在吸波方面的研究现状,并展望了基于MOFs的多孔碳复合吸波材料的发展方向.  相似文献   

16.
江浩庆  柳津  邓鹤翔 《科学通报》2023,(30):3942-3955
金属纳米颗粒具有其宏观块体材料不具备的物化性质,在能源环境、生物医药和光电传感等领域有着广泛的应用.传统的制备工艺往往难以同时实现金属纳米颗粒的图案化排列.金属有机框架材料(metal-organic framework,MOF),有规则排布的金属离子和有机配体,其结构和成分多样,结合激光相干性高,单色性以及高能量等特点,能实现MOF到金属纳米颗粒的瞬时转化,在激光扫描路径的引导下实现空间排布及图案化.本文总结了以MOF为前驱体,以激光为能量来源的金属纳米颗粒打印技术,快速制备不同种类的MOFs衍生纳米金属材料,包括金属单质(Fe,Co,Ni,Cu,Zn,Cd,In,Bi,Pb)、合金(CuZn,CuPd,BiSb,FeNi,FeCo,FeCoNi,MnFeCoNiCu,MnFeCoNiZn)、碳化物(HfC,ZrC,TiC,V8C7,α-MoC,Cr3C2,FeCx)、氧化物(Tb2O3)及碳材料,并实现其空间排列的图案化.同时,对...  相似文献   

17.
随着锂离子电池从便携式电子设备到大规模储能系统的应用,开发具有高能量密度、功率密度和长循环寿命的锂离子电池成为研究的重点之一.而锂离子电池的性能很大程度上取决于电极材料.目前,广泛使用的无机电极材料普遍存在容量提升有限、能耗高和成本高等缺陷.因此,开发新型电极材料至关重要.与传统无机材料相比,有机电极材料具有结构可控、资源丰富、清洁环保和成本低廉等优势,近年来得到了广泛关注.其中共轭羰基化合物以羰基为活性基团,因其结构多样、理论容量高和反应动力学快而被广泛研究.本文从正极、负极、全电池三方面,综述了目前国内外已经开展的关于羰基化合物作为锂离子电池电极材料的研究工作,评述了这些化合物的电化学性能及其具备的优势和存在的不足,并指出了有机化合物作为锂离子电池电极材料需要解决的关键问题.  相似文献   

18.
柔性电子器件日益流行,给人们的日常生活带来了巨大的变革,同时也激发了柔性储能器件的设计和研制,其中,柔性锂离子电池引起了广泛的关注.为了获得柔性储能器件,首先需要制备柔性电极,即要求在反复变形状态下,电极能够保持优异的力学和电学性能.碳材料具有优异的力学性能和导电性,不仅能够直接制备柔性电极,还能够与活性材料复合,作为基底提供自支撑的导电网络.但是"刚性"的活性材料与"柔性"基底从力学和形态本质上均不匹配,二者的复合、组装、制备方法及其结合强度直接影响电池的电化学性能.本文综述了近年来碳纳米管、碳纳米线、石墨烯、石墨炔及碳布等碳基柔性电极的发展情况,着重分析了自支撑柔性电极的制备方法、结构特征与电化学性能的关系,同时简要总结了目前几种典型结构的柔性锂离子电池,探讨了碳材料柔性电极面临的挑战,并对其未来发展方向进行了展望.  相似文献   

19.
近年来,类石墨烯二维层状化合物以其独特的物理化学性质,成为国内外研究的热点.二维金属硒化物在很多应用领域,具有超越金属硫化物与石墨烯的独特性质,特别是在电化学方面.本文简要介绍了二维层状金属硒化物的物理结构与制备方法,特别关注了其在电化学储能,包括锂离子电池、钠离子电池、超级电容器和电催化中的应用,并展望了二维层状金属硒化物的研究前景.  相似文献   

20.
闻雷  陈静  罗洪泽  李峰 《科学通报》2015,(7):630-644
随着具有变形功能的移动电子设备的出现和发展,为其供电的可变形、柔性锂离子电池近年来受到广泛关注.柔性锂离子电池一般指具有可逆弹性变形能力,同时可正常工作的锂离子电池.按照变形难易程度,大部分研究中的柔性锂离子电池,均指可弯折柔性锂离子电池.本文总结了石墨烯在可弯折柔性锂离子电池领域的进展情况.石墨烯具有很高的电子电导率,可将石墨烯附着于高分子、纸、纺织布等柔性基底上,利用基底提供柔性支撑、力学性能,石墨烯提供导电网络,形成石墨烯/柔性基体复合结构.利用石墨烯的二维柔性结构及表面官能团,与其他材料复合,能够制备出一体化石墨烯复合柔性电池电极.石墨烯柔性复合材料作为电极时,能够提高电池的整体能量密度,因此具有更广阔的发展前景.本文同时介绍了柔性锂离子电池的力学特性和电化学性能表征方法,并对柔性锂离子电池的未来发展方向进行了预测.柔性锂离子电池发展趋势是提高其变形能力,并赋予柔性锂离子电池一定的可拉伸性能,以使其适应各种复杂应用;新型柔性锂离子电池也将具有自修复和快速充电能力;未来同时将研究喷涂或打印等新型柔性电极的制备和器件优化设计.虽然仍然存在尚待解决的问题,石墨烯柔性锂离子电池经过适当的电化学性能和力学性能改进,将在移动电子领域得到广泛应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号