首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
Six compounds of the general formula [Ln(pfpr)3]2(NITPhOMe).nH2O, where Ln=Nd, Gd, Dy, Ho, Er, Y, pfpr=pentafluoropropionate, NITPhOMe=2-(4'-methoxyphenyl)-4,4,5, 5-tetra-methylimidazoline-1-oxyl-3-oxide, and n=4 (for Nd, Dy, Er); 3 (for Gd); 6 (for Ho); 5 (for Y), have been synthesized. These complexes were characterized by elemental analyses, IR, electronic spectra and molar conductances. The variable temperature (4-300 K) magnetic susceptibility of the complex [Gd(pfpr)3]2(NITPhOMe).3H2O was determined. The observed susceptibility data were fit to those from theoretical magnetic equation by least-squares method. The exchange integral, J, was found to be equal to 2.14 cm-1. This indicates a weak ferromagnetic spin-exchange interaction between the radical and the gadolinium(III) ion.  相似文献   

2.
Four 3d-4f heterometallic complexes, [CuⅡ LnⅢ (bpt) 2 (NO 3 ) 3 (MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-1,2,4- triazole), [CuⅡ 2 LnⅢ 2 (μ-OH) 2 (bpt) 4 Cl 4 (H 2 O) 2 ]·6H 2 O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal conditions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ -LnⅢ dinuclear unit. The intramolecular Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {CuⅡ 2 LnⅢ 2 } structures with the Ln(Ⅲ) Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CuⅡ-LnⅢ interactions occur in 1 (J CuGd = 0.21 cm-1 ) and 2. The antiferromagnetic interaction occurs in complex 3 with J CuGd = 0.82 cm-1 and J GdGd = 0.065 cm-1 , while dominant ferromagnetic interaction occurs in complex 4.  相似文献   

3.
The syntheses and magnetic properties are reported for a series of copper(Ⅱ) complexes prepared from a pentadentate binucleating ligand 2,6-diformyl-4-methylphenol di(benzoyl-hydrazone) (H3L). These complexes incorporate different exogenous ions (X-) into a bridging position to form copper(Ⅱ) binuclear complexes of the formula [Cu2(H2L)X]2+, where X-= Br-(1), Cl-(2), HO-(3), C2H5O-(4) and C3H3N2- (5). The complexes have been characterized with variable temperature magnetic susceptibility (4.2-300 K) and the observed data were fit to those from a modified Bleaney-Bowers equation by least-squares method, giving the exchange integral 2J = -6.2 cm-1 for 1, -76.4 cm-1 for 2, -241.9 cm-1 for 3, -231.1 cm-1 for 4 and -343.8 cm-1 for 5. This suggested that there is an antiferromagnetic interaction between the Cu(Ⅱ) ions and the sequence of the effect of some exogenous bridging ligands on magnetic coupling is corresponding to that in spectrochemical series.  相似文献   

4.
Syntheses, structures and magnetic properties of two nitrophenyl substituted nitronyl nitroxide radical-lanthanide complexes [Ln(hfac)3(NITmNO_2)2](Ln = Sm(ⅡI)(1), Tb(ⅡI)(2), hfac = hexafluoroacetylacetonate, NITmNO_2 = 2-(3-nitrophenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) have been described in this paper. X-ray analysis shows that the two complexes have similar mononuclear trispin radical-Ln(ⅡI)-radical structures, in which the central Ln(ⅡI) ions are all eight coordinated in D2 d dodecahedral(DD) geometry formed by six oxygen atoms from three hfac and two oxygen atoms from nitronyl nitroxide. The magnetic study indicates the antiferromagnetic interaction between Sm(ⅡI) ion and NITmNO_2 in complex 1, while weak ferromagnetic interaction between Tb(ⅡI) ion and NITmNO_2 in complex 2.  相似文献   

5.
Four binuclear Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes bridged by oxamidate (oxd) group have been synthesized, namely Co2(byp)2(oxd)(ClO4)2 (1), Co2(Me2bpy)2(oxd)(ClO4)2.H2O (2), Ni2(bpy)2(oxd)(ClO4)2.2H2O (3) and Cu2(Me2bpy)2(oxd)(NO3)2 (4). (bpy=2,2'-bipyridyl, Me2-bpy=4,4'-dimethylbipyridyl, oxd=oxamidate) The complexes are characterized by IR, UV spectra, EPR and variable-temperature magnetic susceptibility (4-300 K). The susceptibility data for. complexes 1 and 3 were least-squares fit to the susceptibility equation derived from the spin Hamiltonian H=-2J . S1 . S2. The exchange integral, J, was found to be equal to -3.62 cm-1 in 1 and -1.82 cm-1 in 3. This indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

6.
Three new binudear cobalt (II) complexes with extended te-tracarboxylato- bridge have been synthesized and characterized, namely [Co2 (PMTA) (bpy)4] (1), [Co2(PMTA)-(phen)4] (2) and [Co2(PMTA) (NO2phen)4] (3), where PMTA represents the tetraanion of pyroniellitic acid, and bpy, phen, NO2-phen denote 2,2'-bipyridine, 1,10-phenan-throline; 5-nirto-1, 10-plienanthroline, respectively. Based on elemental analyses, molar conductivity measurements, IR and electronic spectra studies, it is proposed that these complexes have PMTA-bridged structures and consist of two cobalt (II) ions, each in a distorted octahedral environment. These complexes were further characterized by variable temperature magnetic susceptibility measurements (4-300 K) and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, giving the exchange integral J = - 1.02 cm-1 for 1, J = -1.21 cm-1 for 2 and J = - 1.18 cm-1 for 3, respectively. These results revealed the operation of antiferromagneti  相似文献   

7.
Four new heterotrinuclear complexes have been synthesized and characterized, namely {[Ni(L)2]2[Cu(opba)]}(ClO4)2, where opba denotes o-phenylenebis(oxamato) and L stands for 1,10-phenanthroline(phen) (1), 5-nitro-1,10-phenanthroline(NO2-phen) (2), 2,2'-bipyridyl(bpy) (3) and 4,4'-dimethyl-2,2'-bipyridyl(Me2bpy) (4). The temperature dependence of the magnetic susceptibility of {[Ni(phen)2]2[Cu(opba)]}(ClO4)2.3H2O has been studied in the 4-300 K range, giving the exchange integral J=-109 cm-1. The MT vs. T plot exhibits a minimum at about 100 K, characteristic of this kind of coupled polymetallic complex with an irregular spin-state structure.  相似文献   

8.
A series of new lanthanide-radical complexes [{Ln(hfac)3}2(NITPhIM)2] (Ln = Nd (1), Eu (2), Tb (3), Er (4); hfac = hexafluoroacetylacetonate; NITPhIM = 2-[4-(1-imidazole)phenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been prepared and characterized. Single crystal X-ray diffraction analyses reveal that these complexes are isostructural with one-dimensional chain structures. These consist in Ln(hfac)3 units bridged by the paramagnetic ligands by the means of coordination of their nitronyl nitroxide groups and imidazole rings. Interestingly, each Ln ion is either bound to two nitronyl nitroxide groups or to two imidazole units, and the different Ln centers alternate along the chain. Magnetic studies show that complex 3 exhibits a single-chain magnet behavior.  相似文献   

9.
Five novel complexes of formula [Ln(hfac)3] · BNPhOM, where Ln = Gd, Ho, Dy, Y, Er; hfac = hexfluoracetylaceto-nate; BNPhOM = 1,3-[bis-2,2'-(4,4,5,5-tetramethyl-4,5-di-hydro-1H-imidazolyl-1-oxyl-3-oxide)phenoxy] propane, have been prepared and characterized by elemental analysis, molar conductances, IK and electronic spectra. The temperature dependence of the magnetic susceptibility for Gd( III) and radical was measured (2-300 K). The observed data were successfully simulated giving the exchange integral J = 0.28 cm-1, J' = - 0.33 cm-1. These results indicate a weak ferromagnetic spin exchange interaction between Gd(III) ion and the radical and a weak antiferromagnetic spin exchange interaction between the radical and radical.  相似文献   

10.
Four μ-oxamido heterodinuclear complexes, [Cu(oxae)Cr(L)2] (NO3)3,where oxae denotes the N, N'-bis (2-aminoethyl) oxamido dianion and L represents 1, 10-phenanthroline ( phen); 5-nitro-1, 10-phenanthroline (NO2-phen); 5-methyl-1, 10-phenanthroline (Me-phen) and 2,2'-bipyridine (bpy), have been synthesized and characterized by elemental analyses, magnetic moments (at room temperature) and molar conductivity measurements and spectroscopy. It is proposed that these complexes have extended oxamido-bridged structures consisting of a copper (Ⅱ) ion and a chromium (Ⅲ) ion, which have a square planar environment and octahedral environment, respectively. The cryomagnetic properties of the [Cu(oxae)Cr(bpy)2] (NO3)3(1) and [Cu(oxae)Cr(phen)2] (NO3)3(2) complexes have been measured over the range of 4.2-300 K. The least-squares fit of the experimental data based on the spin Hamiltonian, H = - 2JS1·S2, the exchange integrals (J) were evaluated as 36.9 cm-1 for 1 and 35.8 cm-1 for 2. The results have confirmed  相似文献   

11.
Three new complexes, [Co(hfac)2(NIToPy)] (1), [CoCl2(NIToPy)2] (2), and [Co(NIToPy)3](ClO4)2 (3), with NIToPy = 2-(2-Pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-oxy-3-oxide, and hfac = hexafluoroacetylacetonate, have been synthesized. The compound 3 crystallized in the monoclinic space group P21, with two molecules in a unit cell of dimensions a = 10.565(4) Å, b = 14.714(9) Å, c = 14.596(7) Å, and β = 107.10(4)°. The temperature-dependent magnetic susceptibility measurements (4.2 K-300 K) for the complexes demonstrated strong antiferromagnetic exchange interaction between cobalt(II) ion and NIToPy radical spins with J = ?140.1 cm?1 for 1, J = ?94.2 cm?1 for 2, and J = ?161.8 cm?1 for 3, respectively. The magneto-structural correlation in these complexes has been discussed.  相似文献   

12.
Four radical–Ln(III)–radical complexes, [Ln(hfac)3(NITPhSCH3)2] (Ln?=?Gd (1), Dy (2), Er (3), Ho (4); hfac?=?hexafluoroacetylacetonate; NITPhSCH3?=?4′-thiomethylphenyl-4,4,5,5tetramethyl-imidazoline-1-oxyl-3-oxide), have been synthesized, and structurally and magnetically characterized. The X-ray crystal structures show that the structures of the four complexes are similar, consisting of isolated molecules in which Ln(III) ions are coordinated by six oxygen atoms from three hfac and two oxygen atoms from nitronyl radicals. The temperature dependencies of magnetic susceptibilities for the four complexes show that in the Gd(III) complex, ferromagnetic interactions between Gd(III)–radical and antiferromagnetic interactions between the radicals coexist with J Rad–Gd?=?1.09?cm?1, J Rad–Rad?=??1.85?cm?1.  相似文献   

13.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

14.
Abstract. Two radical–LnIII–radical complexes, [Ln(hfac)3(NITPh‐Ph)2] [Ln = Gd ( 1 ) and Ho ( 2 ), hfac = hexafluoroacetylacetonate; and NITPh‐Ph = 4′‐biphenyl‐4, 4, 5, 5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide] were synthesized and characterized by X‐ray diffraction, elemental analysis, magnetic measurements, as well as IR and UV/Vis spectroscopy. X‐ray crystal structure analysis revealed that the structures of both complexes are isomorphous, the central LnIII ions are coordinated by six oxygen atoms from three hfac ligand molecules and two oxygen atoms from nitronyl radicals. The temperature dependencies of the magnetic susceptibilities were studied. They showed that in the GdIII complex, ferromagnetic interactions between GdIII and the radicals and antiferromagnetic interactions between the radicals coexist in this system (with JRad–Gd = 0.1 cm–1, JRad–Rad = –0.309 cm–1).  相似文献   

15.
Abstract

We synthesized an l–arginine complex with the formula [Cu(l–Arg)2(NCS)]·(NCS)·H2O (1) (l–Arg = l–arginine). Two cis-chelated l–arginine zwitterions form the basal plane, while the weakly N-bonded isothiocyanate is located at the apex of the distorted square pyramidal structure (τ?=?0.143). The non-coordinated NCS? anions held layers together in a 3-D supramolecular network. The crystal structure, spectroscopic (FT–IR, Raman, NIR–Vis–UV, EPR) and magnetic properties of 1 have been compared with [Cu(l–Arg)(NCS)2] (2). For 1, two absorptions are observed for ν(C?=?N) stretching vibrations, corresponding to NCS? ions N-bonded to the central Cu(II) (2077?cm?1) and in the lattice (2057?cm?1). In 2 a single band is observed at 2102?cm?1, indicating equivalent NCS? ions in the structure. The EPR spectra of complexes show anisotropic signal with g and g|| 2.062, 2.235 (1), and 2.08, 2.225 (2) characteristic for cis-N2O2 and N3O donor sets in the xy plane, respectively. The unpaired electron mainly occupies the dx2–y2 orbital, also confirmed by the single envelope of d–d bands at ca. 16,000?cm?1 for 1 and 16,500?cm?1 for 2. The magnetic properties ofcompounds are characteristic of a very weak antiferromagnetic interaction with J?=??0.055?cm?1 and J?=??0.096?cm?1 for 1 and 2, respectively.  相似文献   

16.
A novel complex [Cu(NnpPy)2(HlTCB)(H1O)]·2H2O (NITpPy = 2‐(pyrid‐4′‐yl)‐4,4,5,5‐tetramethyl‐1, 3‐dioxoimidazoline; H2TCB = 1, 5‐dicarboxybenzene carboxylic‐2, 4‐diacid) has been synthesized and characterized by X‐ray crystallography analysis. The crystal structure consists of infinite chains of Cu‐(NITpPy)2(H2O) units linked by H2TCB ligands. The complex crystallizes in triclinic system with space group PI. Crystal data: a = 1.0594(2) nm, b = 1.3830(3) nm, c = 1.5551(3) nm, a = 67.75(3)°, β = 89.83(3)°, γ = 70.54(3)°. The variable magnetic susceptibility studies lead to magnetic coupling constant values of J1= ?11.18 cm‐1 (Cu—Rad) and J2 = ?4.06 cm?1 (Cu—Cu).  相似文献   

17.
The TTTA ? Cu(hfac)2 polymer ( 1 ; in which TTTA=1,3,5‐trithia‐2,4,6‐triazapentalenyl, and hfac=(1,1,1,5,5,5)‐hexafluoroacetylacetonate) is one of the most prominent examples of the rational use of the ‘metal–radical’ synthetic approach to achieve ferromagnetic interactions. Experimentally, the magnetic topology of 1 could not be fully deciphered. Herein, the first‐principles bottom‐up procedure was applied to elucidate the nature and strength of the magnetic JAB exchange interactions present in 1 . The computed JAB values give rise to a 2D magnetic topology of ferromagnetic dimers (+11.9 cm?1) coupled through weaker antiferromagnetic interactions (?3.0 and ?3.2 cm?1) in two different spatial directions. The hitherto unknown origin of the antiferromagnetic interdimer interactions is thus unveiled. By using the 2D magnetic topology, the agreement between calculated and experimental χT(T) data is extraordinary. In the metal–radical TTTA ? Cu(hfac)2 compound, the computational model transcends the local dimer cluster model owing to strong interactions between metal centers and organic radicals, thereby creating a de facto biradical. In addition, it is shown that the magnetic topology cannot be inferred from the polymeric [TTTA ??? Cu(hfac)2]n crystal motif, that is, from its chemical coordination pattern. Instead, one should think in terms of magnetic building blocks, namely, the de facto biradicals.  相似文献   

18.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

19.
Six novel μ-oxamido trinuclear complexes, namely Cu2(oxap)2Ln(ClO4)3 (Ln: La, Pr, Nd, Gd, Yb, Ho), where oxap is N,N′-bis(2-aminopropyl)oxamido, have been synthesized. The complex Cu2(oxap)2Gd(ClO4)3 was characterized with variable temperature magnetic susceptibility (4—300 K). The exchange integrals J (Cu—Gd) and J′ (Cu–Cu) were found to be 0.83 cm?1 and ?1.62 cm?1, indicating that very weakly ferromagnetic spin-exchange interaction operates between Cu(II) and Gd (III) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号