首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
以河川沙塘鳢(Odontobutis potamophila)为研究对象,采用c DNA末端快速扩增(RACE)技术对DMRT1的全长基因进行了克隆,并利用生物信息学技术分析其结构和功能;采用实时荧光定量PCR(qRTPCR)技术检测了河川沙塘鳢DMRT1基因在8种组织(鳃、肠、心、肌肉、脑、肝、脾、性腺)、胚胎发育的8个时期(受精卵期、桑椹胚期、原肠胚期、神经胚期、体节期、口裂期、出膜后1 d和出膜后3 d)以及性腺发育的4个时期(Ⅰ~Ⅳ期)中的表达变化。结果表明,河川沙塘鳢DMRT1基因c DNA序列的全长为2025 bp,编码297个氨基酸,其中包括894 bp的开放阅读框(ORF),73 bp的5'非编码区和1058 bp的3'非编码区。与已知物种的氨基酸序列比对后发现,河川沙塘鳢DMRT1的氨基酸序列与军曹鱼(Rachycentron canadum)、欧洲鲈鱼(Dicentrarchus labrax)的同源性最高。DMRT1基因在河川沙塘鳢的精巢组织大量表达,而在卵巢、肌肉、心以及肝4种组织中表达较少,在其它组织中几乎不表达; DMRT1基因在胚胎发育的各个时期都有表达,在原肠期的表达量最高;此外,DMRT1基因表达量在精巢发育的不同时期呈先下降后上升的趋势,在精子成熟期(Ⅳ期)达到最大值,而在卵巢发育的不同时期表达量较少且表达强度差异不明显,因而推测河川沙塘鳢DMRT1基因与精巢的发生和功能的维持有关。研究结果为解析河川沙塘鳢DMRT1基因的功能及其性别决定机制提供了基础资料,也为开展河川沙塘鳢单性育种奠定了基础。  相似文献   

2.
曾文刚  刘振浩  李红  张俊彬 《水产学报》2015,39(11):1604-1612
为了解抗缪勒氏管激素基因(AMH)在金钱鱼性腺发育中的作用,本研究利用RACE技术克隆了AMH的cDNA序列全长,为2324 bp(GenBank登录号:KP718479),其开放阅读框为1631 bp,编码543个氨基酸。同源性分析显示金钱鱼AMH与花鲈相似性最高,为71.16%,与斑马鱼相似性仅为29.83%。系统进化树分析表明,该基因与鲈形目紧密聚为一支,与金钱鱼进化地位一致,说明AMH在进化中有一定保守性。氨基酸结构分析表明其1~28为信号肽序列,69~426为AMH-N区域,444~543为TGF-β结构区。实时荧光定量研究表明,金钱鱼成鱼中AMH基因在精巢中表达量显著高于其他组织,在肝和卵巢中也有表达。性腺不同发育时期分析表明,AMH基因在精巢发育Ⅰ、Ⅱ和Ⅲ期均维持高水平表达,IV期表达水平有所降低,H.E染色结果显示这一时期精巢发育逐渐成熟,推测该基因在精巢发育和精子产生过程中有重要作用。在卵巢中,AMH在Ⅰ、Ⅱ期卵巢发育初期表达量较低,在Ⅲ、Ⅳ期卵母细胞大生长期及卵黄积累期表达量升高,推测其在卵母细胞的发育和功能维持上发挥作用。提示AMH基因在金钱鱼精巢、卵巢发育过程中均发挥重要作用。  相似文献   

3.
本研究克隆了达氏鲟(Acipenser dabryanus)生长转化因子gdf11(growth differentiation factor 11)基因cDNA。达氏鲟gdf11基因cDNA序列全长1 298 bp(不包括Poly A),开放阅读框为1 191 bp,编码396个氨基酸,5非编码区长19 bp;3非编码区长88 bp。通过Signal P软件预测含有N端21aa的信号肽。组织表达特征分析结果显示,gdf11在7种组织中均有表达,在眼和鳃中的表达量较高;不同水流条件下,鳃和心脏gdf11的表达量有显著性差异,静水中鳃gdf11表达量是流水(流速27.0±3.0 cm/s)的4.70倍,而心脏中的表达量是流水的2.72倍。这暗示了gdf11可能在呼吸代谢中发挥功能。  相似文献   

4.
为了解金钱鱼促性腺激素受体基因(GtHRs)在金钱鱼性腺发育中的作用,采用反转录PCR(Rt-PCR)与cDNA末端快速克隆(RACE)首次克隆了金钱鱼卵泡刺激素受体(FSHR)和促黄体生成素受体(LHR)的cDNA序列全长。FSHR的cDNA全长2538 bp,编码702个氨基酸,LHR的cDNA全长3315 bp,编码722个氨基酸,它们都含有属于糖蛋白激素受体(GHR)家族的典型跨膜螺旋结构区域(TM helix)。同源性分析显示金钱鱼GtHRs与欧洲鲈的相似性最高,且GtHRs在进化中具有一定的保守性。性腺不同时期表达分析表明,在卵巢Ⅰ期时,FSHR高水平表达,Ⅱ、Ⅲ、Ⅳ期时在较低水平表达。在精巢中,FSHR的表达水平在Ⅰ、Ⅱ、Ⅲ期逐渐升高并在Ⅲ期达到最高,Ⅳ期开始下降。LHR在金钱鱼卵巢和精巢的Ⅰ、Ⅱ、Ⅲ期低水平表达,在Ⅳ期表达水平达到最高。研究表明,FSHR在金钱鱼性腺发育早期扮演重要作用,LHR与卵子和精子的成熟有关。  相似文献   

5.
采用RACE技术获得西伯利亚鲟(Acipenser baerii)Sox17基因cDNA全长,序列分析表明,西伯利亚鲟Sox17基因cDNA全长2 671 bp,包括588 bp的5'端非翻译区,901 bp的3'端非翻译区和编码393个氨基酸残基的1 183 bp开放阅读框。氨基酸序列比对显示,该基因具较高的保守性,与塞内加尔多鳍鱼(Polypterus senegalus)的相似度最高为72%。系统进化分析表明,西伯利亚鲟与塞内加尔多鳍鱼聚为一支,且支持率为95%。以延伸因子efla(elongation factor 1-alpha)作为内参基因,对Sox17基因在西伯利亚鲟各组织的相对表达量进行分析,发现Sox17基因在不同组织中均有表达,但表达具有明显的组织差异性。在脑中表达量最高,而在肾、血液、眼、肠和胸鳍5个组织中表达量均较低。同时,Sox17基因在西伯利亚鲟不同发育时期均有表达,但表达具有一定的时间差异性。在宽神经板期的表达量高,相当于表达量最低点11日龄仔鱼的167倍。本研究为量化西伯利亚鲟胚胎发育分化过程中相关基因提供了参照工具,同时可为今后深入研究西伯利亚鲟Sox17在胚胎发育过程中的作用提供基础参考资料。  相似文献   

6.
DMRT家族是一类转录因子,在性别决定与分化、器官形成等早期胚胎发育中起重要的作用。本研究采用简并PCR扩增和cDNA末端快速扩增技术(RACE),从栉孔扇贝(Chlamys farreri)精巢中克隆得到1个全长为2312bp的dmrtcDNA序列,其开放阅读框(Open reading frame,ORF)1110bp,编码369个氨基酸,具有dmrt基因家族共有的DM保守结构域。同源比对和系统进化分析结果显示,其为Cf-dmrt4-like基因。半定量RT-PCR结果显示,该基因从受精卵至匍匐幼虫各发育时期均有表达,卵裂期表达量较高;在雄性成体的鳃和精巢以及雌性成体的外套膜、鳃、肾和闭壳肌中表达,但卵巢中未见表达。qRT-PCR检测不同发育时期的精卵巢,以成熟期精巢表达量最高。由此推测,栉孔扇贝Cf-dmrt4-like基因参与个体的早期发育,并在两性成体中发挥着不同的作用。  相似文献   

7.
本研究采用SMART RACE方法克隆了三疣梭子蟹(Portunus trituberculatus)Dnmt2(Pt Dnmt2)基因。该基因c DNA全长为1291 bp,开放阅读框为1203 bp,编码400个氨基酸。结构域分析显示,PtDnmt2基因有典型的C5-DNA甲基化酶结构域。同源分析表明,PtDnmt2氨基酸序列与其他物种有较高的同源性。系统进化分析显示,三疣梭子蟹PtDnmt2氨基酸序列与罗氏沼虾(Macrobrachium rosenbergii)Dnmt2关系最近。qRT-PCR结果显示,PtDnmt2基因在三疣梭子蟹所有组织中均有表达,在卵巢中表达量显著高于其他组织(P0.05)。PtDnmt2基因在胚胎和幼体发育过程中的表达量随发育时期而变化,其在受精卵和多细胞时期无表达,从囊胚期开始出现,随着胚胎的发育表达量逐渐上升。在性腺发育不同时期PtDnmt2基因表达量存在显著差异,其在卵巢II期表达量最高,之后逐渐下降;在精巢中该基因的表达量随着精巢的发育逐渐上升,在IV期达到峰值。本研究结果表明,PtDnmt2基因参与了三疣梭子蟹胚胎、幼体和性腺发育调控。  相似文献   

8.
为研究精子鞭毛蛋白1(Spef1)在精子鞭毛结构的形成与组装中的生物学意义及功能,本研究采用RACE技术和荧光定量PCR技术对曼氏无针乌贼Spef1(简称Sj Spef1)基因cD NA全长进行克隆和组织表达特异性分析。结果显示,SjS pef1 cD NA全长序列共1 135 bp,5′和3′非编码区分别为178 bp和165 bp,预测的开放阅读框(ORF)全长792 bp。编码的蛋白理论分子量为30.567 7 ku,等电点7.03,是一种亲水性蛋白。不存在跨膜区以及信号肽序列,是在细胞内发挥作用的蛋白。二级结构分析发现该蛋白含有丰富的螺旋结构(49%)。氨基酸同源建模显示其蛋白的CH2结构域主要由4个螺旋结构组成,并由多个loop结构串联而成。同源氨基酸序列比对发现,它与加州双斑蛸的相似性最高且仅为59.49%,表明Spef1在进化中并不保守。基于Spef1氨基酸序列构建的系统进化分析表明,曼氏无针乌贼和加州双斑蛸进化关系最近。组织特异性分析表明Spef1在曼氏无针乌贼的精巢中有显著表达。Spef1基因的成功克隆以及组织表达特异性分析对于深入研究其细胞定位以及生物学功能具有重要意义。  相似文献   

9.
利用 PCR 技术和生物信息学方法获得了海湾扇贝(Argopecten irradians irradians) Dmrt1 基因(AiDmrt1)的 cDNA 序列。采用实时定量 PCR 技术确定 AiDmrt1 在不同组织、性腺发育阶段及胚胎和幼虫发育阶段的表达模式, 并结合 RNA 干扰(RNA interference, RNAi)技术敲降 AiDmrt1 表达后检测了精巢中性腺发育相关基因的表达特征。 结果显示, AiDmrt1 开放阅读框长度为 918 bp, 编码 305 个氨基酸, 其编码蛋白具有保守的 DM 结构域。AiDmrt1 的 mRNA 在精巢中特异性表达, 并在精巢发育至生长期表达水平最高。AiDmrt1 在囊胚期前表达量无显著差异, 但在原肠期表达水平显著升高(P<0.01)。敲降 AiDmrt1 表达后, 精巢发育相关基因 Sox7、Sox11 和 Fem-1 显著上调表达(P<0.05 或 P<0.01), 而 Dmrt4 的表达显著下调(P<0.05); 卵巢发育相关基因 FoxL2、Wnt4、β-catenin、GATA-1 和 GATA-3 均显著上调表达(P<0.05 或 P<0.01)。研究结果表明, AiDmrt1 是海湾扇贝精巢特异性表达基因, 参与调控海湾扇贝性腺发育与分化。  相似文献   

10.
为初步阐明拟赤梢鱼(Pseudaspius leptocephalus)卵巢发育特征及sox3 (sry related high mobility group box 3)基因在其卵巢发育过程中的作用,本研究通过组织切片观察了拟赤梢鱼卵巢早期发育过程,利用RACE技术克隆了该鱼sox3基因cDNA全长序列,并进行生物信息学分析;利用实时荧光定量PCR技术分析了sox3基因在拟赤梢鱼不同组织及性腺不同发育时期的表达模式。结果显示,拟赤梢鱼卵巢在孵化后45 d分化形成,160 d时由Ⅰ期进入Ⅱ期,孵化后360 d,卵巢仍处于Ⅱ期。拟赤梢鱼sox3基因cDNA全长为1 800 bp (GenBank登录号:MT952206),编码299 个氨基酸,存在保守的HMG (histidine, methionine, glycine-rich)结构域。氨基酸序列比对和系统进化树分析结果显示,拟赤梢鱼SOX3蛋白与斑马鱼(Danio rerio)和翘嘴鲌(Culter alburnus)亲缘关系最近。此外,sox3基因在拟赤梢鱼卵巢中表达量最高,其次是脑和眼睛,在精巢和其他组织中微量表达;在性腺分化过程中,sox3基因在卵巢中表达量显著高于未分化性腺和精巢,在卵巢发育阶段表达量不断升高,而在精巢中持续低水平表达。综上,本研究推测sox3基因主要参与拟赤梢鱼卵巢的分化和发育。  相似文献   

11.
用兔抗血清对抗促黄体素生成素受体(LHR)或称绒毛膜促性腺激素受体(CGR)和雄激素受体(AR)进行LHR和AR免疫组织化学定位,以揭示外源性促性腺激素(鲤脑垂体激素和hCG)诱发日本鳗鲡精子发生及其内分泌机制。结果表明,经过注射激素处理后的实验组与注射前的对照组相比较,其精巢发育和精子发生出现十分显著的变化。组织学切片观察显示,激素处理前鳗鲡精巢处于精原细胞增殖期,而两种激素混合注射后第10天,实验组可见精小叶中精原细胞的有丝分裂和初级与次级精母细胞的数量显著的增加。注射后第35天,靠近生殖上皮除有少量精原细胞外,精小叶中有大量初级精母细胞和次级精母细胞和少数精子细胞以及管腔中存在少量精子。在注射后第83天,日本鳗鲡完成了精子发生和精巢发育成熟以及释精。免疫组织化学染色结果进一步揭示,激素处理前,LH受体免疫活性分布在生殖上皮,显示强的免疫阳性反应;激素处理后,LH受体定位在Sertoli细胞和间质细胞以及精原细胞和初级与次级精母细胞的胞膜上,均显示强的免疫阳性反应。激素处理前,雄激素受体定位在生殖上皮和早期生精细胞的胞膜上;激素处理后,AR则定位在这些生精细胞的核或胞质,而精子细胞和精子显示免疫阴性反应。这些结果首次证明了这两种激素诱导鳗鲡精子发生和成熟的作用机制是通过LH受体和雄激素受体的介导。  相似文献   

12.
Previous studies have shown that the testis of Selachians is a very suited model to study stage-dependent changes in Sertoli cells during spermatogenesis (Dubois and Callard 1989; Sourdaine et al. 1990). In the dogfish testis (here: Scyliorhinus canicula), germ cells, at an identical stage of spermatogenesis, are associated with Sertoli cells to form spermatocysts, which are arranged in zones corresponding to the different stages of spermatogenesis. Using previously described methods for the isolation and culture of spermatocysts from four spermatogenic stages (spermatogonia, spermatocytes, early spermatids and late spermatids; Sourdaine and Jégou 1989; Sourdaine and Garnier 1992) and electrophoresis techniques (1D and 2D-SDS-PAGE) we have investigated the [35S] methionine incorporation into proteins in the dogfish testis. Our results indicate that protein synthesis reaches a maximum in spermatocysts with spermatocytes. Marked stage-related changes of protein synthesis and secretion were also observed on the autoradiograms of 1D and 2D-SDS-PAGE. Further investigations of the paracrine control of germ cells on Sertoli cell protein synthesis requires the identification of specific Sertoli cell proteins in the dogfish.  相似文献   

13.
对四川华鳊(Sinibrama taeniatus)精子发生过程进行了显微及超微结构观察。结果显示:在四川华鳊精子发生过程中,生精细胞嗜碱性逐渐增强,细胞体积渐小;精原细胞可分为两种,二者在显微及超微结构上均有明显区别;从精原细胞分裂开始就出现胞质不完全分裂,相邻细胞通过细胞质桥连接,并在精子细胞变态中后期消失;初级精母细胞核仁在减数第一次分裂开始后会逐渐消失;精子细胞变态过程中可观察到互相垂直的基体和近端中心粒,晚期出现中心粒附属物并在精子成熟前逐渐萎缩至消失,近端中心粒也在精子成熟时消失;四川华鳊精子头部近圆形或稍不规则,无顶体,核空泡小,核凹窝不发达,尾部具两侧对称的侧鳍,轴丝为"9+2"双联体微管结构。  相似文献   

14.
SUMMARY: We examined the distribution of two rainbow trout androgen receptors (rtAR: rtAR-α and rtAR-β) in the testis immunohistochemically using a specific antibody to clarify the target cells of androgen in spermatogenesis. Positive rtAR immunoreactivity in paraffin-embedded sections was revealed using microwave treatment, and was detected in the nuclei of Sertoli cells, Leydig cells, and other interstitial cells. The presence of rtAR in Leydig cells suggested that fish androgens regulate Leydig cell activity in an autocrine fashion similar to mammalian androgens. In addition, we found that not all Leydig cells exhibited rtAR immunoreactivity in the mature testis by double staining using anti-3β-hydroxysteroid dehydrogenase (3β-HSD) antibody. Furthermore, rtAR immunoreactivity was also detected in the nuclei of spermatogonia, spermatocytes, and spermatids. The intensity of rtAR immunoreactivity in the nuclei of spermatogonia seemed to be weaker than those of spermatocytes and spermatids. These results suggested that androgens act directly on both germ cells and somatic cells in the regulation of spermatogenesis in the rainbow trout.  相似文献   

15.

In the present study, the tilapia Oreochromis mossambicus were exposed to food deprivation for a period of 6 or 12 days and changes in the luteinizing hormone (LH) immunoreactivity in the proximal pars distalis (PPD) of the pituitary gland and the testicular activity were examined. Intensely immunoreactive LH content was noticed in the PPD of the pituitary gland in the initial controls, controls on days 6 and 12, and fasting fish on day 6, whereas the LH immunoreactivity was moderate or weak in fasting fish on day 12. In addition, although the mean gonadosomatic and hepatosomatic indices among different experimental groups did not show any statistically significant difference, the mean numbers of spermatogonia, spermatocytes, and spermatids were significantly lower in food-deprived fish on days 6 or 12 compared to those of controls. The inhibition of the spermatogenesis was accompanied by the presence of abundant spermatozoa in the lumen of seminiferous tubules of the testis in food-deprived fish, whereas the occurrence of spermatozoa was relatively infrequent in initial controls and controls. Furthermore, refeeding to food-deprived fish on day 6 onwards resulted in occurrence of few intensely stained LH secreting cells and significantly higher numbers of spermatocytes and spermatids concomitant with sparse spermatozoa in majority of tubules compared to those of food-deprived fish. These results suggest that prolonged exposure to food-deprivation causes suppression of the LH secretory activity in the pituitary gland and disruption in the spermatogenesis in O. mossambicus.

  相似文献   

16.
二倍体和三倍体皱纹盘鲍精子发生过程的超微结构   总被引:4,自引:0,他引:4  
阎松 《水产学报》2005,29(3):289-295
比较了二倍体和三倍体皱纹盘鲍精子发生过程中细胞和细胞器的超微结构变化。结果表明,二倍体皱纹盘鲍的精子发生经历了精原细胞、初级精母细胞、次级精母细胞、精子细胞和精子5个阶段。其形态结构发生了一系列变化,主要包括:核染色质浓缩、线粒体的发达与融合、顶体形成和胞质的减少。三倍体皱纹盘鲍各种生精细胞的直径和核径均大于二倍体,精原细胞结构与二倍体相似;初级、次级精母细胞的胞质中,除溶酶体外,线粒体、内质网等细胞器少于二倍体,线粒体大小与二倍体没有差别,但形态不典型,层状嵴不发达;三倍体皱纹盘鲍的精子发生停滞在精子细胞阶段,表现出各种畸形状态,很多趋于解体,没有发现成熟精子。  相似文献   

17.
The morphometric study of spermatogenic cysts in sexually mature tilapias, during the evolution of spermatogenesis, showed a dramatic increase in both number of germ cells and cyst volume. However, the opposite trend was observed for germ cell size. Nevertheless, the number of Sertoli cells increased gradually up to leptotene/zygotene cysts, stabilizing thereafter. Based on the number of spermatids supported by each Sertoli cell and compared to mammals, Sertoli cell efficiency in tilapias is remarkably high. Sertoli cell proliferation was frequently observed, mainly in spermatogonial cysts, and probably is the major factor related to the testis growth and the increase in sperm production that normally occurs in adult tilapias. The combined duration of spermatocytes (5 days) and spermiogenic (5–6 days) phases of spermatogenesis in fish kept at 25 °C was 10–11 days. Mainly due to acceleration in meiosis, these two phases lasted a total of 6 days in tilapias kept at 30 °C, in the opposite way, at 20 °C spermatogenesis was arrested at pachytene spermatocytes. To our knowledge, this is the most comprehensive investigation performed up to date on testis morphometry and function in adult tilapias.  相似文献   

18.
吴江立  陈廷荣  穆淑梅  张晗  康现江 《水产学报》2019,43(11):2327-2335
精子发生是指由精原细胞发育为成熟精子的过程。在大多数的物种中,此过程涉及到与DNA结合的碱性蛋白的变化。体细胞类型的组蛋白全部或者部分被过渡蛋白替代,随后又被碱性更强的鱼精蛋白替代,伴随蛋白的逐级替换,此类动物精子核为浓缩的,染色质包装紧密。中华绒螯蟹的精子染色质呈松散的结构,其具体机制尚不明确。本实验利用PCR技术克隆了中华绒螯蟹组蛋白H2A基因的编码区,制备了其多克隆抗体,通过免疫荧光检测了组蛋白H2A在精子发生中的变化特征。结果显示,中华绒螯蟹组蛋白H2A基因编码区为369 bp,编码123个氨基酸,预测蛋白分子量为13.1 ku。氨基酸序列比对发现,H2A与凡纳滨对虾和斑节对虾的同源性极高,均为99.19%。免疫荧光显示,H2A存在于中华绒螯蟹精子发生的整个过程,精原细胞和精母细胞的H2A在细胞核和细胞质均有表达,在精细胞和成熟的精子中的H2A主要存在于细胞核。中华绒螯蟹成熟精子核内组蛋白H2A的保留可能与其非浓缩核有一定关联。  相似文献   

19.
Spermatogenesis and its endocrine regulation   总被引:2,自引:2,他引:2  
Three major phases compose spermatogenesis: mitotic proliferation of spermatogonia, meiosis of spermatocytes, and spermiogenesis, the restructuring of spermatids into flagellated spermatozoa. The process is fuelled by stem cells that, when dividing, either self-renew or produce spermatogonia that are committed to proliferation, meiosis, and spermiogenesis. During all phases, germ cells are in close contact with and require the structural and functional support of Sertoli cells. In contrast to germ cells, these somatic cells express receptors for sex steroids and follicle-stimulating hormone (FSH), the most important hormones that regulate spermatogenesis. A typical Sertoli cell response to an endocrine stimulus would be to change the release of a growth factor that would then mediate the hormone's effect to the germ cells. Recent studies in the Japanese eel have shown, for example, that in the absence of gonadotropin Sertoli cells produce a growth factor (an orthologue of anti-Müllerian hormone) that restricts stem cell divisions to the self-renewal pathway; also estrogens stimulate stem cell renewal divisions but not spermatogonial proliferation. Gonadotropin or 11-ketotestosterone (11-KT) stimulation, however, induces spermatogonial proliferation, which is in part mimicked by another Sertoli cell-derived growth factor (activin B). Since FSH (besides luteinizing hormone, LH) stimulates steroidogenesis in fish, and since FSH is the only gonadotropin detected in the plasma of sexually immature salmonids, increased FSH signalling may be sufficient to initiate spermatogenesis by activating both Sertoli cell functions and 11-KT production. Another important androgen is testosterone (T), which seems to act via feedback mechanisms that can compromise FSH-dependent signalling or steroidogenesis. The testicular production of T and 11-KT therefore needs to be balanced adequately. Further research is required to elucidate in what way(s) 11-KT stimulates later stages of development, such as entry into meiosis and spermiogenesis. At this period, LH becomes increasingly important for the regulation of androgen production. Results from mammalian models suggest that during the later phases, the control of germ cell apoptosis via Sertoli cell factors is an important regulatory mechanism. In many species, sperm cells cannot fertilize eggs until having passed a maturation process known as capacitation, which includes the acquisition of motility. Progestins that are produced under the influence of LH appear to play an important role in this context, which involves the control of the composition of the seminal plasma (e.g., pH values). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Fish spermatogenesis, from spermatogonial stem-cell renewal to sperm maturation, is controlled by the sex steroid hormones. Mitotic divisions of spermatogonia can be categorized by spermatogonial stem cell renewal and spermatogonial proliferation. Spermatogonial renewal is regulated by estradiol-17β (E2; the natural estrogen in vertebrates), and spermatogonial proliferation toward meiosis is promoted by 11-ketotestosterone (11-KT), the main androgen in teleost. The action of E2 and 11-KT is mediated by other factors produced by Sertoli cells; E2 is mediated by spermatogonial stem-cell renewal factor and 11-KT is mediated by spermatogenesis preventing substance and activin B. Although 11-KT also induce meiosis and spermiogenesis, the control mechanisms of these processe are not clear. After spermiogenesis, immature spermatozoa undergo sperm maturation. Sperm maturation is regulated by 17α,20β-dihydroxy-4-pregnen-3-one (DHP), which is progestin in teleost. The DHP acts directly on spermatozoa to active the carbonic anhydrase existed in the spermatozoa. This enzymatic activation causes an increase in the seminal plasma pH, enabling spermatozoa to motile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号