首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
用纳秒级脉冲辐解动态吸收光谱法研究了Br2-自由基引发N-(N-二异丙氧基磷酰化甲硫氨酰)色氨酸甲酯的氧化和电子转移过程,结果表明:Br2-自由基同步氧化Nα-磷酰化二肽中的甲硫氨酸和色氨酸部位,并发生由色氨酸向含硫三电子键自由基的分子内电子转移过程,求算了有关动力学参数,推导了氧化和电子转移机理  相似文献   

2.
(SO4.-)诱导含硫三电子键自由基的生成机理研究   总被引:2,自引:2,他引:0  
运用248nm激光光解瞬态吸收光谱,研究了SO4^·-单电子氧化D-甲硫氨酸*Met)、L-甲硫氨酸甲酯(MME)和甲硫氨酰甲硫氨酸(Met-Met)的反应过程。观察到反应过程中生成3种含硫三电子键自由基中间体,[S∴S]^+、[S∴N]^+[S∴O],并分析了反应机理。  相似文献   

3.
合成了以邻苯二甲酰亚胺为电子受体,末端三甲基硅烷基醚链为电子给体的新的分子内给受电子体系N-(末端三甲基硅烷基硫杂醚链)邻苯二甲酰亚胺(1)和N-(末端三甲基硅烷基氮杂醚链)邻苯二甲酰亚胺(2).化合物1和2在甲醇中进行光反应,在光诱导下发生分子内单电子转移反应,以很高的产率和很高的区域选择性生成硫杂冠醚(3)和氮杂冠醚(4).化合物1~4的化学结构经核磁共振、质谱的验证.  相似文献   

4.
金英学  王欣  曲凤玉  谭广慧  岳群峰 《有机化学》2012,32(12):2363-2367
合成了两种新的分子内给受电子体系N-[2-(2-三丁基锡甲硫基)乙基]邻苯二甲酰亚胺(1a)和N-(3-三丁基锡丙基)马来酰亚胺(1b),并在甲醇、乙腈-30%水、乙腈中进行了光诱导单电子转移反应.化合物1a在光诱导下发生分子内单电子转移反应,以很高的产率和区域选择性生成环胺醇2.化合物1b在光诱导下发生分子内单电子转移反应生成环胺醇3,同时有[2+2]环加成副反应产物4生成.以上所有新化合物的结构经质谱和核磁共振谱验证.  相似文献   

5.
SMCC是一类含有N-羟基琥珀酰亚胺(NHS)活性酯和马来酰亚胺的双功能偶联剂,可以分别将含有巯基和氨基的化合物键接在一起,在生物及化学领域应用广泛。本文采用一锅法将反式氨甲环酸、马来酸酐在DMF作溶剂的条件下反应生成反式氨甲环酸的马来酰胺,再与三氟乙酸酐、N-羟基丁二酰亚胺、三甲基吡啶等反应生成SMCC,对合成SMCC的工艺进行了简单优化,得出了最佳合成条件,总收率可达92%,纯度可达99%以上。  相似文献   

6.
用激光闪光光解瞬态吸收光谱研究了水溶液中含芳香氨基酸残基肽的光敏化反应过程.结果表明,在丙酮存在的含色氨酸残基肽(Trp-Gly,n-f-Met-Trp,Trp-Phe)体系的光解,丙酮三重态与Trp分别通过三重态-三重态(T-T)激发能转移和电子转移生成Trp激发三重态和N中心自由基(Trp/N·);丙酮三重态仅与含酪氨酸残基肽(Phe-Tyr)通过电子转移生成Tyr酚氧自由基(Tyr/O·).在色氨酰酪氨酸(Trp-Tyr)与丙酮的光解体系中,观察到分子内的电子转移,即由Trp/N·-Tyr→Trp-Tyr/O·自由基的生成过程  相似文献   

7.
用电子转移的半经典模型和量子化学半经验方法对色氨酸-酪氨酸二肽体系进行电子转移动力学参数计算.用AM1方法分别优化给体、受体和桥体几何构型,用线性反应坐标的构造了给体和受体分子间电子转移的双势阱,得到两透热势能面交叉处的反应坐标为R=(约等于)0.10,并确定了反应的内重组能及反应热.对色氨酰酪氨酸和酪氨酰色氨酸体系进行闭壳层HF自洽场计算,按Koopmans定理计算体系分子轨道分裂能值A(三角形),在R约为0处发现了A(三角形)的极小值,从而获得色氨酰酪氨酸及酪氨酰色氨酸体系分子内电子转移的电子转移矩阵元V~D~A分别为0.96kJ.mol^-^1和0.87kJ.mol^-^1.采用Marcus双球模型估算反应的溶剂重组能为64.60kJ.mol^-^1。  相似文献   

8.
以脱镁叶绿酸-a甲酯为原料,利用Vilsmeier反应合成δ-(甲酰乙烯基)二氢卟吩衍生物.镍(II)脱镁叶绿酸-a甲酯和镍(II)红紫素-18与Vilsmeier试剂作用,生成了E环被打开的镍(II)δ-(甲酰乙烯基)红紫素-7-三甲酯和镍(II)δ-(甲酰乙烯基)二氢卟吩P6三甲酯.镍(II)N-乙酰氧基红紫素-18-酰亚胺和Vilsmeier试剂作用,生成了镍(II)δ-(甲酰乙烯基)-N-乙酰氧基红紫素-18-酰亚胺.当这些化合物脱去镍离子后,吸收波长明显红移,δ-(甲酰乙烯基)-N-乙酰氧基红紫素-18-酰亚胺的吸收波长达到742nm.同时保留了对δ-位再进行化学修饰的可能性.合成的新化合物均由核磁共振、红外光谱、元素分析和质谱予以证实.  相似文献   

9.
以脱镁叶绿酸-a甲酯为原料,利用Vilsmeier反应合成б-(甲酰乙烯基)二氢卟吩衍生物.镍(II)脱镁叶绿酸-a甲酯和镍(II)红紫素-18与Vilsmeier试剂作用,生成了E环被打开的镍(II)б-(甲酰乙烯基)红紫素-7-三甲酯和镍(II)б-(甲酰乙烯基)二氢卟吩P6三甲酯.镍(II)N-乙酰氧基红紫素-18-酰亚胺和Vilsmeier试剂作用,生成了镍(II)б-(甲酰乙烯基)-N-_乙酰氧基红紫素-18-酰亚胺.当这些化合物脱去镍离子后,吸收波长明显红移,б-(甲酰乙烯基)-N-乙酰氧基红紫素-18-酰亚胺的吸收波长达到742 nm.同时保留了对б-位再进行化学修饰的可能性.合成的新化合物均由核磁共振、红外光谱、元素分析和质谱予以证实.  相似文献   

10.
用纳秒级脉冲辐解动态吸收光谱法研究了Br^-2自由基引发N-(N-二异丙氧基磷酰化甲硫氨酰)色氨酸甲酯的氧化和电子转移过程,结果表明:Br2^-thmhad ad m hi rnudwx N^α-磷酰化二肽中的甲硫氨酸和色氨酸部位。  相似文献   

11.
Triplet-sensitized oxidation of 2-(methylthio)ethanol (2-MTE) and photosensitized formaldehyde formation from 2-MTE were measured in aqueous solutions. The formaldehyde quantum yields were measured in steady-state experiments; whereas the time-resolved detection of dimeric sulfur radical cations (S∴S)+ was followed in nanosecond laser flash photolysis. 4-Carboxybenzophenone was the triplet sensitizer in both types of experiments. It was found that the lifetimes of the (S∴S)+ radicals increased in the presence of phosphate buffer, sodium perchlorate, or D2O. There were corresponding decreases in the formaldehyde yields for these same experimental factors. The phosphate case was discussed in some detail in terms of a new intermolecular complex between the sulfide radical cations and the oxyanions.  相似文献   

12.
The oxidation of methionine (Met) plays an important role during biological conditions of oxidative stress as well as for protein stability. Ruthenium(III)–polypyridyl complexes, [Ru(NN)3]3+, generated from the photochemical oxidation of the corresponding Ru(II) complexes with molecular oxygen, undergo a facile electron transfer reaction with Met to form methionine sulfoxide (MetO) as the final product. Interaction of [Ru(NN)3]3+ with methionine leads to the formation of >S+● and (>S∴S<)+ species as intermediates during the course of the reaction. The interesting spectral, kinetic, and mechanistic study of the electron transfer reaction of four substituted methionines with six [Ru(NN)3]3+ ions carried out in aqueous CH3CN (1:1, v/v) by a spectrophotometric technique shows that the reaction rate is susceptible to the nature of the ligand in [Ru(NN)3]3+ and the structure of methionine. The rate constants calculated by the application of Marcus semiclassical theory to these redox reactions are in close agreement with the experimental values.  相似文献   

13.
The electronic switching properties of thioacetamide dimer (TAD) were investigated using the nonequilibrium Green's function method combined with density functional theory for design of a novel molecular switch. The H‐bonded TAD can be converted upon hole‐trapping to a three‐electron (3e)‐bonded configuration with a S∴S linkage which could provide a more favorable channel for charge transfer than the before. The redox‐induced configuration conversion between the H‐bonded and the 3e‐bonded TADs could govern the charge migration through the molecular junction with a considerable difference in conduction currents. The calculated I–V characteristic curves of two configurations exhibit a switching behavior with an On‐Off ratio in a range of about 4.3–7.6 within the applied voltages. Clearly, this hypothetical scheme provides a potential way to explore the novel conformation‐dependent molecular switch. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

14.
Understanding electron‐transfer processes is crucial for developing organoselenium compounds as antioxidants and anti‐inflammatory agents. To find new redox‐active selenium antioxidants, we have investigated one‐electron‐transfer reactions between hydroxyl (.OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. .OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)+ and α‐{bis(hydroxyl alkyl)}‐selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)+, produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants.  相似文献   

15.
Gelsolin is an actin-severing protein whose action is promoted by Ca2+ ions and inhibited by binding to lipid phosphoinositides incorporated in the inner leaflet of the plasma membrane inner lipid bilayer. In this study, we carried out molecular dynamics (MD) simulations to investigate the influence of calcium cations on the conformation of gelsolin S2 domain. First, gelsolin S2 domain taken from the crystal structure of apo-gelsolin (PDB code: 1D0N) was subjected to three 1100 ps MD simulations in a periodic water box with the 5.0 force field at T=298 K. In the first simulation (S2_Ca2+) excess concentration of Ca2+ was applied, in the second one (S2_phys) the concentration of Ca2+ ions was physiological and in the third one (S2_w) no Ca2+ ions were added. The results of MD simulations showed high conformational flexibility of the N-terminal part of the S2 domain. S2_w deviated from the starting structure considerably more that S2_phys and S2_Ca2+ suggesting that Ca2+ ions stabilize the conformation of the S2 domain of gelsolin.  相似文献   

16.
The fluorescence spectra of unsubstituted porphyrin (H2P), diprotonated porphyrin (H4P2+), and isoelectronic tetraoxaporphyrin dication (TOxP2+) have been measured in solution at room temperature. The S2-->S0 fluorescence has been observed, much more intense for TOxP2+ than for H4P2+ and H2P. In the TOxP2+ case, the S2-->S0 fluorescence spectrum is remarkably sharp and shows an excellent mirror symmetry with respect to S0-->S2 absorption. On the contrary, the spectra of H4P2+ and H2P are shifted and more extended with respect to the absorption counterparts. The differences have been attributed primarily to the change of the equilibrium geometry upon excitation, larger in H2P and H4P2+ than in TOxP2+ and in the case of H4P2+ to the nonplanar conformation of the macrocycle. Also the S1-->S0 spectra of H2P, H4P2+, and TOxP2+ have been measured and more qualitatively discussed. The S1 and S2 fluorescence decays have been observed for H4P2+ and TOxP2+ exciting with ultrashort pulses. The S2 lifetime of TOxP2+ is of the order of the temporal resolution of our experimental apparatus, whereas that of H4P2+ is shorter. The S2-->S0 quantum yield of TOxP2+ has been estimated to be 0.035, approximately 3 orders of magnitude higher than that of H4P2+. It is proposed on the basis of ab initio model calculations that excited states of the H4P2+(CF3COO-)2 complex with charge-transfer character are responsible of the increased extension of the S2-->S0 spectrum with respect to that of H2P.  相似文献   

17.
The newly introduced signature of benzenoids (a sequence of six real numbers Si with i = 6-1) shows the composition of the pi-electron partition by indicating the number of times all rings of the benzenoid are assigned 6, 5, 4, 3, 2, or 1 pi-electrons. It allows the introduction of a new ordering criterion for such polycyclic aromatic hydrocarbons by summing some of the terms in the signature. There is an almost perfect linear correlation between sums S6 + S5 and S4 + S3 for isomeric cata- or peri-fused benzenoids, so that one can sort such isomers according to ascending s 6 + S5 or to descending S4 + S3 sums (the resulting ordering does not differ much and agrees with that based on increasing numbers of Clar sextets and of Kekule structures). Branched cata-condensed benzenoids have higher S6 + S5 sums than isomeric nonbranched systems. For nonisomeric peri-condensed benzenoids, both sums increase with increasing numbers of benzenoid rings and decrease with the number of internal carbon atoms. Other partial sums that have been explored are S6 + S5 + S3 And S6 + S2 + S1, and the last one appears to be more generally applicable as a parameter for the complexity of benzenoids and for ordering isomeric benzenoids.  相似文献   

18.
In this paper, 1,2-bis(2-acetamido-6-pyridyl)ethane, receptor 1, having an ethylene spacer is reported to recognise dicarboxylic acids. The binding study in the solution phase is carried out using 1H NMR (1:1) and UV–vis experiments and in the solid phase by single-crystal X-ray analysis. In 1H NMR, the downfield shifts of specific amide protons of receptor 1 in 1:1 complexes of receptor and guest diacids, and in the UV–vis experiment, the appearance of an isosbestic point as well as significant binding constants are observed, which thus unambiguously support the complexation of receptor 1 with dicarboxylic acids in solution. Receptor 2, simple 2-acetamido-6-methylpyridine, has lower binding constants than receptor 1 due to cooperative binding of two pyridine amide groups with two acid groups of diacids. In the solid phase, the ditopic receptor 1 shows a grid-like polymeric hydrogen-bonded network that changes to a polymeric wave-like 1:1 anti-perpendicular network instead of the synsyn polymeric 1:1 (Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett. 2005 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 46, 7187–7191), antianti polymeric 1:1 (Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem. 2006 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 18, 571–574; Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm. 2008, 10, 507–517; Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron 2008, 64, 6426–6433), synsyn 2:2 (Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997 (a) Garcia-Tellado, F., Goswami, S., Chang, S.K., Geib, S.J. and Hamilton, A.D. 1990. J. Am. Chem. Soc., 112: 73937394. (b) Geib, S.J.; Vicent, C.; Fan, E.; Hamilton, A.D. Angew. Chem. Int. Ed. Engl.1993, 32, 119–121. (c) Garcia-Tellado, F.; Geib, S.J.; Goswami, S.; Hamilton, A.D. J. Am. Chem. Soc.1991, 113, 9265–9269. (d) Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc.1997, 119, 2777–2783. (e) Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Tetrahedron2004, 60, 4197–4204. (f) Korendovych, I.V.; Cho, M.; Makhlynets, O.V.; Butler, P.L.; Staples, R.J.; Rybak-Akimova, E.V. J. Org. Chem.2008, 73, 4771–4782. (g) Ghosh, K.; Masanta, G.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. J. Phys. Chem. B2009, 113, 7800–7809 [Google Scholar], 119, 2777–2783) or topbottom-bound 1:1 (Garcia-Tellado, F.; Goswami, S.; Chang, S.K.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1990 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 112, 7393–7394) co-crystals.

  相似文献   

19.
Dissociation of energy-selected c-C2H4S+ was investigated in a region of 10.6-11.8 eV with a threshold photoelectron-photoion coincidence technique and a synchrotron as a source of vacuum ultraviolet radiation. Branching ratios and average releases of kinetic energy in channels of formation of c-C2H4S+, CH3CS+, and HCS+ were obtained from well-resolved time-of-flight peaks in coincidence mass spectra. Measured average releases of kinetic energy for channel CH3CS+ + H of least energy are substantial and much greater than calculated with quasiequilibrium theory; in contrast, small releases of kinetic energy near the appearance onset for channel HCS+ + CH3 agree satisfactorily with statistical calculations. Calculations of molecular electronic structures and energetics of c-C2H4S+ and C2H3S+ isomers and various fragments and transition states were also performed with Gaussian 3 method to establish dissociation mechanisms. A predicted dissociation energy of 11.05 eV for c-C2H4S --> HCS+ + CH3 agrees with a linearly extrapolated threshold at 10.99+/-0.04 eV and a predicted dissociation mechanism that c-C2H4S+ isomerizes to CH3CHS+ before dissociating to HCS+ + CH3 supports the experimental results. The large releases of kinetic energy for channel CH3CS+ + H might result from a dissociation mechanism according to which c-C2H4S+ isomerizes to a local minimum CH3CSH+ and then dissociates through a transition state to form CH3CS+ + H.  相似文献   

20.
用ab initio分子轨道方法(RHF,UHF)和密度泛函(DFT)方法研究了团簇Co2S+,Co3S2+的各种可能的几何构型和电子结构,并计算了相应的较稳定构型的振动光谱,发现Co2S+和Co3S2+团簇最稳定结构均具有C,对称性.对团簇的成键作用机理进行了理论分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号