首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
采用微波法快速合成了Ca3Sc2Si3O12∶Ce绿色荧光粉。用X射线粉末衍射(XRD)、扫描电镜(SEM)、荧光分光光度计等对合成产物的结构、形貌、以及发光特性进行了研究。结果表明:材料的晶体结构与Ca3Sc2Si3O12的相同,属于立方晶系,具有Ia3d空间群。颗粒的形貌为类球形,分散性很好,尺寸小于1μm。激发光谱为一位于400~500 nm的宽带,可与蓝光LED芯片匹配使用。发射光谱也呈现为一宽带,发射主峰位于505 nm,该宽峰对应于Ce3+离子的5d-2F5/2及5d-2F7/2能级跃迁。研究发现Ce的掺杂浓度对样品主发射峰的发光强度有着很重要的影响,Ca3-xSc2Si3O12∶Cex荧光粉的最佳掺杂浓度为x=0.10时达到最大,继续增加Ce的浓度发光强度反而降低。  相似文献   

2.
根据蓝光芯片的发光特性,从激活剂、助熔剂、基质Y3+的替代物等方面较系统地研究了YAG∶Ce3+荧光粉的制备。最终的荧光粉产品制成5mm封装20mA蓝光激发的白光LED后,光效可达70 lm/W,显色指数≥80。  相似文献   

3.
魏岚 《稀土》2011,32(2)
根据蓝光芯片的发光特性,从激活剂、助熔剂、基质Y3+的替代物等方面较系统地研究了YAG:Ce3+荧光粉的制备.最终的荧光粉产品制成φ5mm封装20mA蓝光激发的白光LED后,光效可达70lm/W,显色指数≥80.  相似文献   

4.
采用微波辅助液相沉淀法制备了Ca1-xMoO4∶ Eu3+(0.05≤x≤0.09)系列红色荧光粉.通过荧光光谱仪、SEM、XRD测试和表征了该荧光粉的荧光性能、形貌、结构.结果表明,当Eu3+掺杂量为0.07,烧结温度为900℃,保温时间为3h时,可获得性能最佳的荧光粉,在395 nm和465 nm波长激发下,在616 nm处出现了很强的发射峰,对应于Eu3+的5D0→7F2的跃迁.采用微波辅助液相沉淀法制备的荧光粉发光强度高于高温固相法所制备的荧光粉,适合白光LED用红色荧光粉.  相似文献   

5.
采用高温固相反应法制备了稀土掺杂荧光粉NaCa0.98PO4:Eu2+0.02,在波长360nm激发光激发下,荧光粉发射波长在500nm左右的绿光。采用Li+为掺杂离子取代基质晶格中的Na+位,通过杂质离子掺杂量对发光性能影响的研究,获得Li+的最佳掺杂量为5mol%。在波长为360mm近紫外光激发下,Na0.95Li0.05Ca0.98PO4:0.02Eu2+的发射强度是NaCa0.98PO4:Eu0.022+的2.5倍,该荧光粉为适用于近紫外激发的白光LED的绿色荧光粉。  相似文献   

6.
采用溶胶-凝胶法合成Ca3Al2O6:Eu3+红色荧光粉,通过XRD、SEM、荧光光谱分别对样品的结构、形貌以及发光性能进行表征,讨论煅烧温度、Eu3+掺杂浓度以及电荷补偿剂对样品发光性能的影响.结果表明:实验所得样品的结构与Ca3Al2O6相同,Eu3+掺杂并没有改变其晶体结构.合成的荧光粉在394 nm近紫外光激发下发出615 nm明亮的红光.样品的红光强度随着煅烧温度的升高先增加后减弱,最佳烧结温度为1200℃.同样红光强度也随着Eu3+掺杂浓度的增加先增加后减弱,最佳Eu3+掺杂浓度为4%(摩尔分数).加入电荷补偿剂后样品的发光强度均增强,其中加入K+后发光增强的效果最显著.该铝酸盐红色荧光粉性质稳定,在白光LED近紫外芯片激发中具有潜在的应用.  相似文献   

7.
综述了白光LED用YAG:Ce3+黄色荧光粉多种制备技术的新进展,包括固相反应法、溶胶-凝胶法、喷雾干干燥法、燃烧法、共沉淀法、共沉淀-熔盐法等,并对这些方法的优缺点进行了综合比较,展望了该领域的发展前景及研究趋势.  相似文献   

8.
The luminescence intensity of emission peak at around 525 nm decreased in the Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphors. Mg2+ ion, which was likely incorporated into the Sc3+ position of the host crystal, was co-doped to adjust the crystal field and compensate for the excess positive charge due to the doping of Ce3+. The green emission belonged to the 5d→4f transition of Ce3+ moved toward longer wavelength by addition of Mg2+ in Ce3+ and Er3+ co-doped Ca3Sc2Si3O12 phosphor, which could increase the brightness of the phosphor. However, the position of weakening of luminescence intensity at around 525 nm remained basically unchanged by increasing the amount of Mg2+. The results showed that the weakening of luminescence intensity at around 525 nm caused by the absorption of Er3+, which had little influence on the environment of the crystal field.  相似文献   

9.
采用高温固相反应法合成了蓝色荧光粉NaBa0.98P04:Eu2+0.02.利用射线衍射(XRD)、扫描电镜(SEM)和荧光光谱等实验技术,研究了掺杂离子和掺杂浓度对荧光粉的晶体结构和发光性能的影响.结果表明:制备的粉末为单斜晶系NaBaP04,能被从紫外到蓝光波长范围的激发光有效激发,在波长360nm激发光激发下,发射光为波长在430nm左右的蓝光.同时,研究表明最佳掺杂离子为Ca2+,最佳掺杂浓度为7% mol,荧光粉NaBa0.91Ca0.07PO4:Eu2+0.02的发光强度是NaBa0.98PO4:Eu2+0.02的1.68倍,该方法制备的荧光粉是一种很好的白光LED的蓝色荧光粉材料.  相似文献   

10.
《稀土》2015,(5)
利用高温固相法合成系列Na Ln4(Si O4)3F∶Eu3+(Ln=La,Gd,Y)红色荧光粉,用X射线粉末衍射仪和荧光分光光度计对荧光粉进行结构和性能表征,研究Eu3+浓度以及基质组成的变化对Na Ln4(Si O4)3F∶Eu3+(Ln=La,Gd,Y)发光性能的影响。在394 nm激发下,荧光粉Na La4-x(Si O4)3F∶x Eu3+中的Eu3+主要体现5D0→7F2(616 nm)和5D0→7F1(590 nm)跃迁发射,而且5D0→7F2和5D0→7F1跃迁发射强度比例随Eu3+浓度的增大而变化,较低浓度时5D0→7F1发射比5D0→7F2强,较高浓度时则刚好相反。在273 nm激发下,荧光粉Na La3.9-yGdy(Si O4)3F∶0.1Eu3+或Na La3.9-zYz(Si O4)3F∶0.1Eu3+中Eu3+的5D0→7F2(616 nm)发射随掺杂离子浓度增加而增强,而5D0→7F1发射强度变化不大。因此可以通过改变Eu3+浓度以及基质组成离子Gd3+或Y3+浓度对5D0→7F2和5D0→7F1发射强度加以调整,进而调整荧光粉的红光色度。  相似文献   

11.
We described the synthesis and luminescence of Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ phosphor for light emitting diode (LED). The crystal-linity, morphology, structure, and luminescence spectra were examined by X-ray diffraction, field emission-scanning electron microscopy and photoluminescence spectroscopy. The results showed that Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ phase was a dominating phase with little impurity phase peaks of Y2O3 when the sintered temperature reached to 1400 oC. Field emission scanning electron microscopy (FE-SEM) images showed the particle size of the phosphor was about 3 μm. Meanwhile, the excitation and emission spectra indicated that the as-prepared phosphors could be effectively excited by blue (460 nm) light and the excitation spectrum showed a broad band extending from 400-500 nm, while emission spectrum showed a broad yellow band peaking at 534 nm. The decay curve at the emission peak consisted of fast and slow components. The Ca1.5Y1.5Al3.5Si1.5O12:Ce3+ should be a promising yellow phosphor for near blue-based white-light-emitting diodes (LEDs).  相似文献   

12.
YAG:Ce3 phosphor particles were prepared using polyacrylamide gel method. The structure evolution of powders during annealing process was followed by X-ray diffraction determination. It is found that some intermediate phases, including θ-Al2O3, YAM and YAP, are formed when calcining polyacrylamide gel, however, the pure YAG phase can be formed directly when calcining polyacrylamide gel with α-Al2O3 as seed crystal. These facts show that the existence of α-Al2O3 seed crystal can block the formation of θ-Al2O3, YAM and YAP, and accelerate its reaction with Y2O3 to form YAG phase directly at lower temperature. The emission peak of prepared YAG:Ce3 phosphor is wide with maximum at 550 nm and the exitation band has two peaks, the major one is around at 460 nm, which matches the blue emission of GaN LED and is suitable for the assemble of white LED. Some fluxes can enhance the photoluminescence intensity of phosphor particles, that can be attributed both to the improvement of crystallization processes of YAG and to the stabilization of trivalence cerium ion in YAG:Ce3 .  相似文献   

13.
Ca3Sc2Si3O12:Ce3+ phosphors with single-phase were successfully synthesized by a gel-combustion method.Annealing atmosphere greatly affected the luminescent properties of the phosphor.The intensity of absorption band at 450 nm was greatly increased with a reducing atmosphere,which was very suitable as a color converter in white LED.The absorption at 243 and 311 nm was gradually enhanced with a stronger reducing atmosphere and a new absorption peak at 362 nm appeared in N2+H2 mixing gas.The emission intensit...  相似文献   

14.
The blue-emitting phosphor NaBaPO4:Eu2+ was prepared by the combustion method. The phase structure and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Under the excita-tion wavelength of 360 nm, the emission spectrum exhibited only one blue band centering at 435 nm, which was ascribed to the 4f65d1→4f7 transition on Eu2+ ions. Compared with the phosphor obtained by solid-state reaction method, the relative emission intensity of sample ob-tained by combustion method increased slightly. The decay times and the temperature dependence luminescence intensities (25-300 oC) were discussed in order to further investigate the potential applications. Furthermore, Eu2+-doped NaBaPO4 phosphor showed higher thermally sta-ble luminescence comparable to commercially available Y3Al5O12:Ce3+ (YAG:Ce3+) phosphor. All the investigated suggestions that Na-BaPO4:Eu2+ is a good phosphor candidate applied in white light emitting diode.  相似文献   

15.
YAG:Ce3+(Yttrium aluminum garnet) fluorescence powders were successfully prepared by co-precipitation method using aluminum nitrate,yttrium nitrate,cerous nitrate as the starting materials and ammonium carbonate as precipitant.The products were characterized by X-ray powder diffraction,luminescence spectrometer,transmission electron microscope(TEM).The XRD results showed that the obtained YAG:Ce3+ fluorescence powders had the crystalline structures of YAG at calcinations temperature of 900 oC and the TEM results showed that the grain diameters were about 100 nm.The YAG:Ce3+ fluorescence powders,synthesized by co-precipitation method,had the best luminescence property when the Ce doping amount was x=0.06 in the molecular formula of Y3-xCexAl5O12,the calcinations time was 2 h and the calcinations temperature was 1000 °C.  相似文献   

16.
A series of Eu3+ and Dy3+ doped/co-doped as well as un-doped BaB2Si2O8 phosphors were synthesized via solid state reaction method. The PL result showed typical blue and green emission from Dy3+ and red emission from Eu3+. The f-f transitions involving the lanthanide ions along with dopant site occupancy were discussed thoroughly. Phonon assisted energy transfer process was observed from Eu3+ to Dy3+, which enhanced the emissions of Dy3+. Combinations of the emissions from Eu3+ and Dy3+ showed a possible white to red tuneable emission on the CIE diagram. The white warmth emissions of the phosphor were revealed to be adjustable through designing the dopant concentration and excitation wavelengths. An unusual energy transfer that originated from Eu3+ to Dy3+ was also discovered and the energy transfer mechanism was discussed. Proposed energy transfer mechanism was investigated using luminescence decay lifetime. All the phosphor exhibited efficient excitation in the UV range which matched well with the emissions from Ga N-based LED chips. This presented the Ba B2Si2O8 phosphor as a promising candidate for white LED applications. The effects of doping on the structural properties and the optical band gap of Ba B2Si2O8 phosphor were also discussed in this study.  相似文献   

17.
YAG:Ce3+ phosphor was prepared by a novel co-precipitation-rheological phase method.The resulting YAG:Ce3+ phosphor was characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and photoluminescent emission spectra.By using acetic acid as solvent,YAG:Ce3+ powder with small particle size(≤2 μm) was obtained at a relatively lower sintering temperature of 1400 oC.With the content of acetic acid increasing,small particles dissolved and disappeared,but larger particles grew up and changed its shape from spherical to partially rectangular.Meanwhile,the emission intensity of the sample prepared by co-precipitation-rheological phase method was about 43% higher than that of the sample prepared by co-precipitation method.It was assumed that the significant improvement of luminescence was mainly because the rheological phase presented a better diffusion environment,and therefore,a better homogeneity of activators of Ce3+.  相似文献   

18.
Yellow-emitting YAG:Ce3+ nanocrystalline phosphors were prepared by citrate sol-gel combustion method using citric acid as the fuel and chelating agent. The influence of mole ratio of citric acid to metallic ions (MRCM), pH value of the solution, calcination temperature and Ce-doped concentration on the structures and properties of as-prepared powders were investigated in detail. Higher crystallinity and better luminescence performance powders were obtained at MRCM=2, pH=3 and the calcination temperature of 1200 °C. The phosphors exhibited the characteristic broadband visible luminescence of YAG:Ce. The optimum concentration of Ce3+ was 1.0 mol.%, and the concentration quenching was derived from the reciprocity between electric dipole and electric quadrupole (d-q). Especially, the pH value of the solution was a key factor to obtain a stable sol-gel system and then obtain pure and homogeneous rare earth ions doped YAG phosphors at a lower tem-perature. The Y3Al5O12:Ce0.03 phosphor with optimized synthesis-condition and composition had a similar luminescence intensity with the commercial phosphor YAG:Ce.  相似文献   

19.
A new convenient calcium cyanamide (CaCN2) reduction route was developed to synthesize the Eu2 activated Ca-α-SiAlON phosphors containing low oxygen content. The luminescence properties of the obtained products were investigated for white LEDs application. The critical Eu2 concentration in various hosts and its effect on the photoluminescence properties were studied. The optimized sample (10at.% Eu2 vs. Ca2 ) could be efficiently excited by the current GaN/InGaN blue LED chips and provided emission intensity competitive with that of YAG:Ce3 (P46-Y3) standard, revealing that this phosphor was a potential candidate for phosphor-converted white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号