首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mean stress effects in steel weldments were examined under both constant and random narrowband amplitude fatigue loadings. The purpose of these tests was to provide experimental data with which to substantiate the use of analytical expressions to account for mean stress effects. Fatigue tests were performed under both tensile and compressive mean stress levels. Test results indicate agreement with the modified Goodman equation to be favorable in accounting for the effect of tensile mean stresses on fatigue life. However, test results from high fatigue loadings (maximum stresses nominally above half ultimate) were found to possess better agreement with the Gerber formulation than with the modified Goodman one. Behavior under compressive mean stresses indicated a linear correction relationship was required, which was less conservative than any of the relationships considered. Test results obtained under random amplitude fatigue loadings exhibited trends similar to those observed under constant amplitude loadings. This finding, along with supporting analysis, indicates that the same correction relationship can be used in the same manner for both constant amplitude and random (narrowband) amplitude loadings.  相似文献   

2.
The aim of this paper is to develop a probabilistic approach of high cycle fatigue (HCF) behaviour prediction of welded joints taking into account the surface modifications induced by welding and the post‐welding shot peening treatment. In this work, the HCF Crossland criterion has been used and adopted to the case of welded and shot peened welded parts, by taking into account the surface modifications which are classified as follows: (i) the compressive residual stresses, (ii) the surface work‐hardening, (iii) the geometrical irregularities and (iv) the superficial defects. The random effects due to the dispersions of: (i) the HCF Crossland criterion material characteristics (ii) the applied loading and (iii) the surface modifications parameters are introduced in the proposed model. The HCF reliability has been computed by using the ‘strength load’ method with Monte Carlo simulation. The reliability computation results lead to obtain interesting and useful iso‐probabilistic Crossland diagrams (PCD) for different welding and shot peening surface conditions. To validate the proposed method, the approach has been applied to a butt‐welded joint made of S550MC high strength steel (HSS). Four types of specimens are investigated: (i) base metal (BM), (ii) machined and grooved (MG) condition, (iii) As welded (AW) condition and (iv) as welded and shot peened (AWSP) condition. The comparison between the computed reliabilities and the experimental investigations reveals good agreement leading to validate the proposed approach. The effects of the different welded and post‐weld shot peened specimen's surface properties are analysed and discussed using the design of experiments (DoE) techniques.  相似文献   

3.
In this paper, the modified Wöhler curve method proposed by Susmel and Lazzarin is employed to predict the fatigue life of welded connections subjected to biaxial cyclic loading. This criterion is reformulated here in order not to take into account the mean stress effect, as suggested by several design codes (at least when welded connections are not completely stress relieved). The accuracy of the proposed method in fatigue lifetime estimation was evaluated by using a number of data sets taken from the literature. The modified Wöhler curve method was applied in terms of nominal stresses and was calibrated using the uniaxial and torsional fatigue curve determined by reanalysing the experimental data, as well as using the standard fatigue curves of the Eurocode 3. The proposed approach was seen to be successful, giving multiaxial fatigue life predictions located within the widest scatter band related either to uniaxial or to torsional data, independently of both out‐of‐phase angle and load ratio value. Finally, the accuracy of the modified Wöhler curve method was compared to the one obtained by applying the procedure suggested by the Eurocode 3: the proposed criterion is demonstrated to be much more accurate and reliable than the standard one.  相似文献   

4.
超声捶击提高超细晶粒钢焊接接头的疲劳性能   总被引:7,自引:1,他引:6  
焊接接头疲劳强度是其最重要的服役性能,由于焊接残余应力的作用和焊接接头处的几何不连续性,焊接接头的疲劳强度一般大大低于母材,采用超声捶击方法提高超细晶粒钢焊接接头的疲劳强度,通过对对接接头焊践处进行超声波冲击处理,对比超声波冲击处理后焊接接头的疲劳强度,实验结果表明:超声捶击使得S-N曲线右移,FAT(循环寿命为10^6时的疲劳强度)提高幅度达到66%,在应力范围为200MPa的疲劳寿命提高58倍,研究表明,经超声捶击处理,焊趾处的应力集中系数相应减小,焊接残余应力由拉应力转换为压应力,这是超声捶击提高焊接接头疲劳强度的主要机制。  相似文献   

5.
Residual stresses due to the welding process in steel structures can significantly affect the fatigue behaviour. Usually, high tensile residual stresses up to the yield strength are conservatively assumed at the weld toes. This conservative assumption can result in misleading fatigue assessments. Areas with compressive residual stresses may be present in complex structures, where the details are less critical than predicted. This is shown in the paper by the example of fillet‐welded stiffener ends, where beneficial compressive residual stresses cause the initiation of fatigue cracks at other locations in less‐strained areas. Another example for the effects of residual stresses concerns the stress initiation and propagation at a structural detail under fully compressive load cycles. Fatigue cracks are possible here due to high tensile residual stress fields. The conclusion is that the welding‐induced residual stresses should be known in advance for a reliable fatigue assessment, which becomes possible to an increasing extent by numerical welding simulation.  相似文献   

6.
To better understand the crack closure and propagation, an analytical model is established. The residual stress effect on fatigue crack growth equations has been considered using the residual stress intensity factor (SIF) (Kres). The joint geometries, residual stress distributions (σres) and residual stress ratio (Rres) were considered also. Kres are calculated using the analytical weight function (WF) method and different residual stress distributions. It is to be emphasized that the current approach is little investigated. This is because the WF has already been developed to calculate SIF for an existing crack. The current approach calculates Kres for the crack that initiates and propagates until failure. Different stress distributions have been used, and Rres is defined. The validity of using the WF has been shown. SIF due to applied load (Kapp) and applied stress ratio (Rapp) have been considered. Fatigue crack growth rate was investigated in accordance with the current approach. The results have been verified and benchmarked.  相似文献   

7.
Low cycle fatigue (LCF) and creep fatigue interaction (CFI) behaviour of P92 steel welded joint were investigated experimentally and numerically. Strain‐controlled LCF tests at different strain amplitudes and CFI tests at different peak strain holding time were conducted. Evolutions of cyclic stress response, mean stress, and creep strain during cycling were described, in which the influence of strain amplitude and holding time were investigated. A specific heat treatment process was proposed to get the homogenous simulated material of fine grain region and coarse grain region in the heat affected zone. Material parameters of parent material, fine grain heat affected zone, coarse grain heat affected zone, and weld metal in the unified viscoplasticity model were then determined and validated. To predict the LCF and CFI behaviour of welded joint, 3‐dimensional unified viscoplasticity model with a modified isotropic variable was compiled into ABAQUS UMAT. The comparison between the predicted and experimental result under LCF and CFI loadings showed that the simulation results were reasonable and agreed with the experimental data well.  相似文献   

8.
Current fatigue design methods for assessing welded steel structures under complex combined or multiaxial loading are known to be potentially unsafe. This has led to a number of research projects over the past 10 years. Some progress has been made in developing better methods, but they are not yet suitable for general design. This paper presents an interim solution based on a review and analysis of relevant published data; all referring to fatigue failure from a fillet weld toe. These indicate that Eurocode 3/IIW S – N curve FAT80/3 (negative inverse slope of 3) is suitable for combined normal and shear stresses acting in phase, and possibly for out-of-phase (i.e. non-proportional loading) bending and shear if the shear stress is not due to torsion. However, a shallower curve FAT80/5 is necessary for out-of-phase torsion and bending or tension. Both curves are used in conjunction with the nominal maximum principal stress range occurring during the loading cycle.  相似文献   

9.
Reversed bending fatigue tests have been conducted using four series of mash seam welded joints obtained from the coupling of two different steels and plate thicknesses. Fatigue strength was evaluated and the effects of material property changes resulting from welding were studied. Fatigue strength of all series of the welded joints decreased slightly compared with that of the base steel. Type of steel and plate thickness in the welded samples exerted very little influence on fatigue strength. In the welded joints between steels with the same plate thickness, fatigue failure took place at a location away from the weld zone in the plate with the lower strength, while in the welded joints between plates of different thickness, failure occurred at the shoulder between the thin and thick plate, i.e. at the weld zone. Regardless of the type of steel and the plate thicknesses joined, fatigue strengths of the mash seam welded joints were slightly higher than those of the laser welded butt joints.  相似文献   

10.
Arc welding typically generates residual tensile stresses in welded joints, leading to deteriorated fatigue performance of these joints. Volume expansion of the weld metal at high temperatures followed by contraction during cooling induces a local tensile residual stress state. A new type of welding wire capable of inducing a local compressive residual stress state by means of controlled martensitic transformation at relatively low temperatures has been studied, and the effects of the transformation temperature and residual stresses on fatigue strength are discussed. In this study, several LTTW (Low Transformation‐Temperature Welding) wires have been developed and investigated to better characterize the effect of phase transformation on residual stress management in welded joints. Non‐load‐carrying cruciform fillet welded joints were prepared for measurement of residual stresses and fatigue testing. The measurement of the residual stresses of the three designed wires reveals a compressive residual stress near the weld toe. The fatigue properties of the new wires are enhanced compared to a commercially available wire.  相似文献   

11.
Tubular space trusses for bridge applications use thick‐walled tubes. The reduction in fatigue resistance due to geometrical size effects is thus an important issue. In order to carry out a thorough study, both fatigue tests on large‐scale specimens and advanced 3D crack propagation modelling were carried out at ICOM/EPFL. The study is limited to circular hollow sections (CHS) K‐joints. An alternate current potential drop (ACPD) system is used to measure crack depth on nodes of the tested truss specimens. The results obtained from the tests are given in the paper in terms of S‐N data, crack depth versus number of cycles and deduced crack propagation rates. The numerical model was developed using the dual boundary elements method (DBEM), software BEASY?, and was validated with fatigue tests data. The stress intensity factors (SIF) along the doubly curved crack front at different crack depths were obtained. With this model, a parametric study investigates the influence of geometry, size and load case on fatigue life. The results of both proportional and non‐proportional sizing effects on fatigue strength are presented. The paper shows that size effects (proportional and non‐proportional) can be expressed as a function of the non‐dimensional parameters and chord thickness.  相似文献   

12.
Influence of mean stress on fatigue life and fatigue limit was investigated for Type 316 stainless steel. The results for prestrained specimens revealed that fatigue life was almost the same in the same strain range regardless of stress amplitude, maximum peak stress and mean strain. The fatigue life was shortened when applying the mean stress for the same strain range, whereas it was increased for the same stress amplitude. It was shown that the reduction in fatigue life was brought about by the change in the effective strain range, which was caused by the increase in minimum peak stress and the ratcheting strain. The fatigue life could be predicted conservatively even if the mean strain was applied by assuming the effective strain range to be equal to the total strain range (by assuming the crack mouth to be never closed). It was concluded that the mean stress correction was not necessary for the load-controlled cyclic loading and for the region where the ratcheting strain was constrained.  相似文献   

13.
The very high cycle fatigue and small fatigue crack growth behaviour of a generic tool steel material for diesel fuel injector application are described. The small crack growth tests for the tool steel material with and without the hardening heat treatment revealed the mechanisms of crack propagation and threshold behaviour. Based on the small fatigue crack propagation threshold value, an elastic plastic fracture mechanics methodology for the prediction of the endurance limit of specimens with submillimeter holes is proposed. The advantages of the new methodology are discussed in relation to existing methodologies for endurance limit prediction of specimens with small holes.  相似文献   

14.
Because of wide applications of welded structures in different industries, using design codes and standards such as IIW recommendations is known as a safe and common method to design welded joints. The weld geometry and thickness of welded joint are the most important parameters that affect the fatigue strength of welded joints. In the present study, the fatigue behaviour of thin Al5456 butt‐welded joints has been investigated, and the effect of thickness on fatigue strength has been evaluated. Contrary to the above‐mentioned recommendations about thin welded joints, it was shown that the thickness of welded joints affects the fatigue strength. Moreover, the fatigue test results have been compared with the IIW design recommendations for three well‐known approaches in order to analyse the reliability of the codes. According to the design stress‐life diagrams, it was found that in some cases, the fatigue strength has much larger values than the IIW predictions, and IIW‐based design causes an over conservative design. While in some other cases, the fatigue strength is lower than IIW recommendations, and it leads to a non‐conservative design. Based on the experimental results, the new values for slope of S‐N curve and FAT have been proposed in order to improve the design diagrams.  相似文献   

15.
16.
SN data were acquired in bending from some 50 extruded 6261 aluminium alloy I-beams (100 mm deep, 75 mm wide and 4.2 mm thick) with cover plates welded to them. Cover plate end details were rectangular, oval or rhomboid in shape with either welded or unwelded transverse ends. Fatigue strengths of the various end details varied by about 25% at lives of either 105 cycles or 2×106 cycles. The SN data were compared with design curves from British Standard CP 118:1969 and BS 8118 Part 1:1991 BS 8118 provided a conservative life estimate over the range tested (104−2×107 cycles), while the predictions of CP 118 were non-conservative at lives > 2±106 cycles. A simple two-dimensional finite-element analysis of a model cover plate/I-beam geometry was linked with growth rate data obtained from SENB specimens, to provide a life prediction SN curve from a Paris law integration. There was good agreement between the results from the model and the experimental data.  相似文献   

17.
Ultrasonic fatigue tests (test frequency: 20 kHz) and conventional tension–compression fatigue tests (10 Hz) have been conducted on annealed and 10% pre-strained specimens of 0.13% carbon steel. Small holes were introduced on the specimen surface to investigate the effect of test frequency on small crack growth. The dynamic stress concentration factor and the stress intensity factor under ultrasonic fatigue tests were checked to be almost the same as those of conventional tension–compression fatigue tests. However, the fatigue properties were dependent on the test frequency. Ultrasonic fatigue tests showed longer fatigue life and lower fatigue crack growth rate for the annealed and 10% pre-strained specimens. Slip bands were scarce in the neighbourhood of cracks under ultrasonic fatigue tests, while many slip bands were observed in a wide area around the crack under conventional fatigue tests. In order to explain the effect of test frequency on fatigue strength, dynamic compression tests with Split Hopkinson bars were carried out. The stress level increases substantially with the strain rate. Thus, the increase in fatigue strength might be, to a large extent, due to a reduction in crack tip cyclic plasticity during ultrasonic fatigue tests.  相似文献   

18.
Fretting fatigue is one of the most important phenomena for inducing a significant reduction of fatigue strength and consequently, leading to unexpected failure accidents of the engineering structures even at very low stresses. In the present study, both plain and fretting fatigue tests with zero mean stress were carried out on two different types of steel, low-carbon steel and martensitic stainless steel, by means of a reversed bending fatigue testing machine. The drop in the fatigue strengths through fretting at vise clamp-specimen interface were significant for both tested steels. The fretting processes produced a reduction in fatigue strength of about 27% for low-carbon steel and 16% for martensitic stainless steel.  相似文献   

19.
This paper investigates the possibility of unifying different criteria concerned with the fatigue strength of welded joints. In particular, it compares estimates based on local stress fields due to geometry (evaluated without any crack-like defect) and residual life predictions in the presence of a crack, according to LEFM. Fatigue strength results already reported in the literature for transverse non-load-carrying fillet welds are used as an experimental database. Nominal stress ranges were largely scattered, due to large variations of joint geometrical parameters. The scatter band greatly reduces as soon as a 0.3-mm virtual crack is introduced at the weld toe, and the behaviour of the joints is given in terms of Δ K I versus total life fatigue. Such calculations, not different from residual life predictions, are easily performed by using the local stress distributions determined near the weld toes in the absence of crack-like defects. More precisely, the analytical expressions for K I are based on a simple combination of the notch stress intensity factors K 1N and K 2N for opening and sliding modes. Then, fatigue strength predictions, as accurate as those based on fracture mechanics, are performed by the local stress analysis in a simpler way.  相似文献   

20.
In recent years, joint types in railway superstructure have shifted to continuous welded rails (CWRs), which can be constructed by various welding techniques to form uninterrupted rails several kilometres long. Because of the numerous advantages of this method, CWR systems are highly preferred today for the construction of new railway lines. The increase in the number of trains in operation is inducing fatigue damages, linking to life‐threatening risks in the rails as well as in trains' wheels and axles. In this study, CWR specimens formed by the flash butt‐welding process are investigated. Specimens extracted from rail sections are subjected to four‐point bending fatigue tests to establish S–N curves under various loading levels. The surfaces of those specimens which fail are then investigated in detail in order to determine the initiation points of the failures. The findings provide experimental data on the dynamic life cycle of CWR and identify the failure mechanism of the CWR system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号