首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: To evaluate the surface hardness (Knoop Hardness Number) of the thin layer in three light-cured and dual-cured resin cements irradiated through or not through 2.0 mm thick machinable ceramics. METHODS: A piece of adhesive polyethylene tape with a circular hole was positioned on the surface of the ceramic plate to control the cement layer (approximately 50 microm). The cement paste was placed on the ceramic surface within the circle. The ceramic plate with resin cement paste was placed on a clear micro cover glass over a zirconia ceramic block to obtain a flat surface, and the material was polymerized using a visible-light-curing unit. The surface hardness was recorded at a series of time intervals up to 5 days, starting from the end of a light-irradiation period. RESULTS: The hardness steadily increased with post-irradiation time and tended towards a maximum, usually reached after 1 or 2 days. In all cases, the increase in hardness was relatively rapid over the first 30 minutes and continued at a lower rate thereafter. The dual-cured resin cement for each material showed a significantly higher hardness value than the light-cured resin cement irradiated either through or not through ceramics at all post-irradiation times. The resin cements cured through ceramic for each material were significantly less hard compared with those cured not through ceramics at all post-irradiation times.  相似文献   

2.
The present study evaluated the durability of bond strength between zirconia and 3 different resin cements. Thirty stabilized tetragonal zirconium-dioxide blocks were duplicated in dual-curing resin core build-up material specimens. Resin blocks were randomly luted to zirconium surfaces using 1) Clearfil Esthetic Cement (CLF), 2) RelyX Unicem Aplicap (RELX), or 3) Multilink Automix (MLA). After 24 h, half of the specimens from each of the 3 groups were loaded in tension until fracture (0.5 mm/min). The remaining half were tested after 6,000 thermal cycles (5 to 55°C). Data were analyzed using 2-way ANOVA and the Tukey test (α = 0.05). Fractographic analysis was performed using a stereomicroscope. Tensile bond strength values were significantly affected by the luting agent system employed and by thermal aging (P < 0.001). The highest tensile bond strength values in non-thermal-aged groups were observed for specimens from the RELX and CLF groups. In contrast, in the thermal-aged groups, the highest tensile bond strength values were for the MLA and RELX groups. Moreover, while thermocycling significantly affected bond strengths in the RELX and CLF groups, the mean strength of the MLA group did not significantly change after aging. There was little difference in the distribution of failure modes in any group.  相似文献   

3.

PURPOSE

The aim of this Fourier transform infrared (FTIR) spectroscopic study was to measure the degree of conversion (DC) of dual-cured resin cements light-irradiated through zirconia ceramic disks with different thicknesses using various light-curing methods.

MATERIALS AND METHODS

Zirconia ceramic disks (KT12) with three different thicknesses (1.0, 2.0, and 4.0 mm) were prepared. The light transmittance of the disks was measured using ultraviolet visible near-infrared spectroscopy. Four different light-curing protocols were used by combining two curing light modes (Elipar TriLight (standard mode) and bluephase G2 (high power mode)) with light-exposure times of 40 and 120 seconds. The DCs of the two dual-cured resin cements (Duo-Link and Panavia F2.0) light-irradiated through the disks was analyzed at three time intervals (3, 7, and 10 minutes) by FTIR spectroscopy. The data was analyzed using repeated measures ANOVA (α=.05).Two-way ANOVA and Tukey post hoc test were used to analyze the 10 minute DC results.

RESULTS

The 1.0 mm thick disk exhibited low light transmittance (<25%), and the transmittance decreased considerably with increasing disk thickness. All groups exhibited significantly higher 10 minute DC values than the 3 or 7 minute values (P<.05), but some exceptions were observed in Duo-Link. Two-way ANOVA revealed that the influence of the zirconia disk thickness on the 10 minute DC was dependent on the light-curing methods (P<.001). This finding was still valid even at 4.0 mm thickness, where substantial light attenuation took place.

CONCLUSION

The curing of the dual-cured resin cements was affected significantly by the light-curing technique, even though the additional chemical polymerization mechanism worked effectively.  相似文献   

4.
目的:探讨水储存条件对不同光强度照射条件下的双重固化树脂粘接剂机械性能的影响.方法:按照ISO 4049标准,将3种双重固化树脂粘接剂(Linkmax HV, Nexus 2和VariolinkII HV)制作成2 mm×2 mm×25 mm长方形试件,接受800, 310 和80 mW/cm2光强度照射后,干燥储存1 d或水储存90 d.储存后的试件接受三点弯曲试验测量其挠曲强度和弹性模量.使用SPSS 11.5统计软件对每种粘接剂的试验数据进行双因素方差分析.结果:光强度的减弱显著降低了3 种树脂粘接剂的挠曲强度和弹性模量;而90 d的水储存只显著降低了Linkmax HV和VariolinkII HV的弹性模量和挠曲强度,其中只有VariolinkII HV的弹性模量在光照射条件与水储存条件间出现在统计学上有显著性差异的交互作用,随着光强度的减弱其弹性模量呈现出加速降低的趋势.结论:双重固化树脂粘接剂仍然需要足够的光照射强度才能获得良好的机械性能和性能的稳定.  相似文献   

5.
Hardening of dual-cured cements under composite resin inlays.   总被引:1,自引:0,他引:1  
This study was conducted to determine the extent of hardening of three dual-cured cements under composite resin inlays and to determine the effectiveness of a light-reflecting wedge in promoting curing of the cements in the proximal margin. The exposure times needed to optimally harden the cements were determined by directly exposing the cements to the curing light. Composite resin inlays were bonded in an extracted molar with Dual cement, Dicor light-activated cement, and Duo cement. Cure-Thru reflective wedges were placed in the gingival embrasure of half of the specimens. None of the cements hardened completely by 24 hours when we used an exposure time that met or exceeded that recommended by the manufacturers. The chemical-cure component did not completely cure the cements when light was attenuated by the tooth and restoration. The light-transmitting wedge had little effect on hardening of the cements.  相似文献   

6.
PURPOSE: This study evaluated the bond strength of four commercial resin luting cements to enamel and superficial dentin, using a second-generation laboratory composite. MATERIALS AND METHODS: Forty teeth were embedded in acrylic: 20 had superficial dentin exposed; 20 had enamel exposed. Each group was divided into four subgroups (n = 5) to be bonded with Variolink II, Dual Cement, 2-bond-2, and Permalute System, using an inverted, truncated cone of pre-cured Artglass that was placed over the resin cement with a load of 2 N for 2 seconds. Specimens were stored at 37 degrees C in 100% relative humidity for 24 hours before being tested for tensile bond strength (MPa). Data were analyzed using a two-way analysis of variance. Tukey-Kramer intervals for comparisons among resin cements and bonding substrates were calculated at a .05 significance level. RESULTS: Significant differences were found among resin cements. Variolink II had statistically higher bond strength values for both substrates than the rest of the cements evaluated. When bonding was to enamel, all failures were cohesive in the composite, and when bonding was to dentin, some adhesive failures occurred at the resin cement-dentin interface. Permalute System had higher bond strengths than 2-bond-2 and Dual Cement when bonded to enamel. CONCLUSIONS: Variolink II and Permalute had statistically different bond strengths to enamel and dentin. Variolink II showed statistically higher values for dentin bonding than the other cements. Use of Variolink II and Permalute resulted in statistically higher bond strengths than the other two cements.  相似文献   

7.
ObjectivesTo evaluate the hydrolytic stability of different dual-cure resin cements when luted to zirconia ceramic.MethodsEighteen cylinder-shaped zirconia blocks (Cercon Zirconia, Dentsply) were conditioned with: Group 1, no treatment; Group 2, sandblasting (125 μm alumina–Al2O3-particles); Group 3, tribochemical silica coating (50 μm silica-modified Al2O3 particles). Ceramic blocks were duplicated in composite resin (Tetric Evo Ceram, Ivoclar-Vivadent). Composite disks were luted to pre-treated ceramic surfaces using: (1) Clearfil Esthetic Cement (CEC; Kuraray); (2) Rely X Unicem (RXU; 3M ESPE); (3) Calibra (CAL; Dentsply Caulk). After 24 h, bonded samples were cut into microtensile sticks (1 mm2). Half of the sticks were loaded in tension until failure (cross-head speed of 0.5 mm/min). The remaining half was tested after 6 months of water storage at 37 °C. Data was analyzed with three-way ANOVA and Tukey’s test (P <0.05). Fractographic analysis was performed by SEM.ResultsAfter 24 h, bond strength of CEC to zirconia was significantly higher than that of RXU and CAL, independently from the ceramic pre-treatment (P <0.001). Using CAL, all samples failed prematurely except when luting to sandblasted surfaces. After 6 months of water aging, bond strength of CEC significantly decreased. RXU did not significantly alter bond strengths. Adhesion of sandblasted specimens luted with CAL fell over time. Micromorphological alterations were evident after water storage.SignificanceResin–ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. CEC and RXU were both suitable for luting zirconia. Water aging played an important role in the durability of zirconia-to-composite chemical bonds.  相似文献   

8.
The purpose of the study was to determine the influence of light-irradiation through two ceramic and one resin composite materials on the degree of remaining double carbon bonds in 3 dual-polymerized resin cements. After mixing, the cement was inserted into a 0.5 mm deep recess in a silicon mold, covered with one ceramic or resin composite rectangular block and exposed through the block with the light from a halogen polymerization unit for 40 s. Infrared spectroscopic analysis was used to record the degree of remaining double carbon bonds. Light irradiation through 2 mm-thick ceramic and resin composite materials increased the degree of remaining double carbon bonds relative to the direct photopolymerization analogues.  相似文献   

9.
目的研究不同光照模式对两种双固化树脂粘接剂聚合程度的影响。方法采用间歇光照、即刻光照、延迟光照和无光照4种不同固化方式,分别制备3MRelyXUnicem和DMGPermaCem2.0双固化树脂试件.24h避光保存后使用显微硬度仪测定样本表面硬度.三点弯曲试验测量挠曲强度.差示扫描量热仪进行玻璃化转变温度测量。数据采用协方差分析进行统计。结果两种树脂粘接剂各组表面硬度和挠曲强度由高到低依次为:间歇光照模式、即刻光照模式〉延迟光照模式〉无光照模式(P〈0.05)。差示扫描量热分析未检测到明显吸热峰,不能确定玻璃化转变温度。除无光照组外.3MRelvX Unicem表面硬度均显著高于DMG PermaCem2.0(P〈0.05);DMG PermaCem2.0挠曲强度显著高于3MRelyX Unicem(P〈0.05)。结论间歇光照模式比延迟光照模式更有利于提高双固化树脂粘接剂聚合程度:双固化树脂粘接剂在无光照情况下聚合不全;与3MRelyX Unicem相比.DMGPernlaCem2.0抗压性能较差.但韧性较好.且无光照条件下聚合程度更高。  相似文献   

10.
PURPOSE: The influence of the curing mode (dual vs light) and of the photopolymerization through ceramic or resin composite on the degree of remaining carbon bonds was investigated via infrared spectroscopic analysis for 1 resin cement (Calibra, Caulk/Dentsply). MATERIALS AND METHODS: The 0.5-mm cement layer was photopolymerized for 40 s through the 2-mm-thick ceramic Empress 2 (Ivoclar) and Vitadur Alpha (Vident) and the laboratory-processed resin composite Sinfony (3M/ESPE). RESULTS: The dual-cured system polymerized better than the light mode. Photopolymerization of the resin cement through the translucent materials reduced its curing efficiency in both curing modes. The resin composite induced a more negative effect than the 2 ceramics tested. CONCLUSION: The curing mode and photopolymerization of dual-cured resin cements through esthetic restorative materials affects the degree of remaining double carbon bonds.  相似文献   

11.
12.
13.
14.
15.
This investigation evaluated the effect of resin composite inlay/onlay thickness on the hardness of a group of eight dual-cure resin-based cements. Fourteen disc specimens measuring 6 mm in diameter and 2.5 mm thick were prepared from each of eight dual-cure cements: Adherence, Choice, Duolink, Enforce, Lute-It, Nexus, Resinomer and Variolink. Two specimens from each material were directly light-cured while the remainder of the specimens were light-cured through resin composite spacers varying in thickness from 1 mm to 6 mm. Curing through the spacers always resulted in a decrease in the Knoop hardness number. For some cements, hardness values were reduced by 50% or more when the resin composite spacer thickness was 4 mm or greater even when measurements were made one week after dual-curing. Low hardness values indicate the presence of a weak chemical-curing mechanism that may compromise cement quality in areas of the cavity not readily accessible to the curing light.  相似文献   

16.
Light supplying to luting resin cements is impeded in several clinical situations, causing us to question whether materials can properly be cured to achieve adequately (or adequate) mechanical properties. The aim of this study was therefore to analyse the effect of light on the micro-mechanical properties of eight popular dual-cured self-adhesive resin cements by comparing them with two conventional, also dual-cured, resin cements. Four different curing procedures were applied: auto-polymerisation (dark curing) and light curing (LED unit, Freelight 2, 20 s) by applying the unit directly on the samples’ surface, at a distance of 5 and 10 mm. Twenty minutes after curing, the samples were stored for 1 week at 37°C in a water-saturated atmosphere. The micro-mechanical properties–Vickers hardness, modulus of elasticity, creep and elastic/plastic deformation–were measured. Data were analysed with multivariate ANOVA followed by Tukey’s test and partial eta-squared statistics (p < 0.05). A very strong influence of the material as well as filler volume and weight on the micro-mechanical properties was measured, whereas the influence of the curing procedure and type of cement–conventional or self-adhesive–was generally low. The influence of light on the polymerisation process was material dependent, with four different behaviour patterns to be distinguished. As a material category, significantly higher micro-mechanical properties were measured for the conventional compared to the self-adhesive resin cements, although this difference was low. Within the self-adhesive resin cements group, the variation in micro-mechanical properties was high. The selection of suitable resin cements should be done by considering, besides its adhesive properties, its micro-mechanical properties and curing behaviour also.  相似文献   

17.
Micro-shear bond strength of dual-cured resin cement to glass ceramics.   总被引:4,自引:0,他引:4  
OBJECTIVES: The aim of this study was to investigate the effects of sandblasting, etching, and a silane coupling agent on the ability of dual-cured resin cement to bond to glass ceramics designed for in indirect adhesive restoration. METHODS: A cast glass ceramic (Olympus Castable Ceramics) with a crystalline phase consisting of mica and beta-spondumene was selected as the substrate material. The glass surfaces, which were sandblasted, polished, or etched with phosphoric acid or hydrofluoric acid (HF), were bonded with a dual-cured resin cement (Panavia Fluoro Cement) using a dentin adhesive system (Clearfil SE Bond), both with and without a silane coupling agent. A micro-shear bond test was carried out to measure the bond strength of the resin cement to the glass surface. Each glass surface was bonded and tested using the shear test. In addition, surfaces with the bonding removed after the shear bond test, the adhesive interface between the glass and cement, and an etched glass surface without any bonding, were studied morphologically using scanning electron microscopy or field emission scanning electron microscopy. RESULTS: Usage of a silane coupling agent effectively raised the bond-strength values of resin cement (Fisher's PLSD, P<0.01). The effectiveness of using phosphoric acid etching to improve bonding was not clear (Fisher's PLSD, P>0.01). HF-etching for 30s seemed to over-etch the glass surface, resulting in adverse effects on bonding (Fisher's PLSD, P<0.01). SIGNIFICANCE: The micro-shear bond strength between Olympus Castable Ceramics and resin cement can be increased by the silane coupling agent used along with an acidic primer.  相似文献   

18.
19.
PURPOSE: To evaluate the shear bond strength of two dual-cured resin luting cements (Linkmax HV and Panavia Fluoro Cement) to machinable glass-ceramics (Decsy Machinable Ceramic) and the effect of three silane coupling agents (Clearfil Porcelain Activator, Ceramic Primer, and Porcelain Liner M) on the bond strength. METHODS: Disk-shaped specimens fabricated from machinable glass-ceramic blocks using a low-speed cutting saw were either treated or not treated with one of three silane coupling agents and then bonded together with one of two dual-cured resin luting cements. Specimens were stored in water at 37degrees C for 24 hours and/or thermal cycled 50,000 times before shear bond strength testing. RESULTS: Regardless of the resin luting cement and thermal cycling, specimens treated with the Clearfil Porcelain Activator showed the highest shear bond strength among all the treatments. Surface treatment of the Clearfil Porcelain Activator showed significantly greater shear bond strength after 50,000 thermocycles compared with other treatments. However, significant differences in bond strength were observed between 0 and 50,000 thermocycles for all treatments.  相似文献   

20.
OBJECTIVES: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). MATERIALS AND METHODS : Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25°C or preheated to 37°C or 50°C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). RESULTS : Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25°C (p=0.01830), while no significant difference was observed among groups at 37°C and 50°C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25°C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37°C near 70% reduction and at 50°C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). CONCLUSION : Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号