首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study examines both high-flux flow boiling and critical heat flux (CHF) under highly subcooled conditions using FC-72 as working fluid. Experiments were performed in a horizontal flow channel that was heated along its bottom wall. High-speed video imaging and photomicrographic techniques were used to capture interfacial features and reveal the sequence of events leading to CHF. At about 80% of CHF, bubbles coalesced into oblong vapor patches while sliding along the heated wall. These patches grew in size with increasing heat flux, eventually evolving into a fairly continuous vapor layer that permitted liquid contact with the wall only in the wave troughs between vapor patches. CHF was triggered when this liquid contact was finally halted. These findings prove that the CHF mechanism for subcooled flow boiling is consistent with the interfacial lift-off mechanism proposed previously for saturated flow boiling.  相似文献   

2.
Pool boiling and CHF experiments were performed for vertical, rectangular parallel-plate channels immersed in the dielectric liquid FC-72 at atmospheric pressure to elucidate the effects of geometrical confinement in immersion cooled electronics applications. Heat transfer enhancement in the low flux region of the nucleate boiling curve was observed for channel spacings near and below expected bubble departure diameters, but was widely different for two different heater materials. Relative degradation of CHF with decreasing channel spacing was found to be a strong function of channel aspect ratio and independent of surface material and finish.  相似文献   

3.
High critical heat fluxes (CHFs) for subcooled boiling of water in a small tube were investigated experimentally. A platinum tube with an inner diameter of 1.0 mm and a length of 40.9 mm was used in the experiment. The upward flow velocity, the subcooling of water, and the outlet pressure of the experimental tube were varied to enable a parametric study of the CHFs. The flow velocity ranged from 9 to 13 m/s and the inlet subcooling ranged from 69 to 148 K. The boiling number decreased with increasing Weber number. The boiling number is also dependent on a non-dimensional parameter and the density ratio of liquid to vapor. A correlation for the high CHF of the small tube was obtained based on the experimental data. Finally, the high CHF correlation was evaluated using the CHF data obtained by other researchers.  相似文献   

4.
Critical heat flux (CHF) was measured and examined with high-speed video for subcooled flow boiling in micro-channel heat sinks using HFE 7100 as working fluid. High subcooling was achieved by pre-cooling the working fluid using a secondary low-temperature refrigeration system. The high subcooling greatly reduced both bubble departure diameter and void fraction, and precluded flow pattern transitions beyond the bubbly regime. CHF was triggered by vapor blanket formation along the micro-channel walls despite the presence of abundant core liquid, which is consistent with the mechanism of Departure from Nucleate Boiling (DNB). CHF increased with increasing mass velocity and/or subcooling and decreasing hydraulic diameter for a given total mass flow rate. A pre-mature type of CHF was caused by vapor backflow into the heat sink’s inlet plenum at low mass velocities and small inlet subcoolings, and was associated with significant fluctuations in inlet and outlet pressure, as well as wall temperature. A systematic technique is developed to modify existing CHF correlations to more accurately account for features unique to micro-channel heat sinks, including rectangular cross-section, three-sided heating, and flow interaction between micro-channels. This technique is shown to be successful at correlating micro-channel heat sink data corresponding to different hydraulic diameters, mass velocities and inlet temperatures.  相似文献   

5.
HighHeatFluxBurnoutinSubcooledFlowBoilingG.P.Celata;M.Cumo;A.Mariani(ENEAEnergyDepartment,ViaAnguillarese,301I-00060S.M.Galer...  相似文献   

6.
A new mechanism model for determination of the critical heat flux (CHF) in subcooled impingement boiling on the stagnation zone is proposed in this paper. It is based on the combination of the Helmholtz instability theory of macrolayer and the model of bubble induced turbulent heat transfer in subcooled impingement boiling. A semi-theoretical and semi-empirical correlation and its nondimensional form of the CHF for subcooled jet impingement boiling on the stagnation zone are also derived. Under the circumstances of CHF, the bubble induced turbulent heat transfer coefficient gets doubled as compared to the single-phase laminar heat transfer coefficient according to the theoretical model and the experimental data. And this kind of bubble induced turbulent heat transfer enhancing effect can be considered as a fixed ratio. The theoretical analysis result for the present case is successfully verified by the experimental result obtained on the smooth heating surface. Through the discussions, it is obtained that the CHF ratio of the subcooled jet impingement boiling against the saturated jet impingement boiling is theoretically related to the surface condition of the heater and the properties and impact velocity of the working fluid.  相似文献   

7.
In view of practical significance of a correlation of critical heat flux (CHF) in the aspects of engineering design and prediction, this study is aiming at evaluation of existing CHF correlations for flow boiling of water with available databases taken from small-diameter tubes, and then development of a new, simple CHF correlation. Available CHF databases in the literature for flow boiling of water in small-diameter tubes (0.33 < Dh < 6.22 mm) are collected, covering wide parametric ranges. Three correlations by Bowring, Katto and Shah are evaluated with the CHF data for saturated flow boiling, and three correlations by Inasaka–Nariai, Celata et al. and Hall–Mudawar evaluated with the CHF data for subcooled flow boiling. The Hall–Mudawar correlation and the Shah correlation seem to be the most reliable tools for CHF prediction in the subcooled and saturated flow boiling regions, respectively. In order to avoid the defect of predictive discontinuities often encountered when applying previous correlations, a simple, nondimensional, inlet conditions dependent CHF correlation for saturated flow boiling has been formulated. Its functional form is determined by the application of the artificial neural network and parametric trend analyses to the collected database. Superiority of this correlation has been verified by the database. The new correlation has a mean deviation of 16.8% for this collected databank, smallest among all tested correlations. Compared to many inordinately complex correlations, this new correlation consists only of a single equation.  相似文献   

8.
Experimental results of the saturated-flow boiling critical heat flux (CHF) in microchannels for both multi- and single-channel configurations were obtained from the literature. The collected database contains 629 data points, covering five halogenated refrigerants, nitrogen, and water, for a wide range of operational conditions, and different microchannel dimensions. The whole database was analyzed by using five empirical correlations to verify their respective accuracies. However, none of the existing correlations could predict the entire database precisely. A saturated CHF correlation was proposed by using boiling number, length-to-diameter ratio, and exit quality. Combining with the energy balance equation, the new correlation can predict the overall microchannel database accurately on the whole. It predicts almost 97.0% of the non-aqueous data (except R12 data points located in the macro-scale region) and 94.0% of the water data within the ±30% error band.  相似文献   

9.
The purpose of this study is to conduct the critical heat flux (CHF) correlation for narrow channels. The CHF of subcooled flow boiling of water in narrow rectangular channels under atmospheric pressure was measured parametrically. Experimental test channels were rectangular and heated from one side with the channel gap of 0.2-3.0 mm, channel width of 7-22 mm, and heated length of 50-200 mm. First, the CHF correlation for the one-side heated rectangular channels was proposed with investigating the various system parameter effects on CHF. Next, applicability of the correlation to both-side heated rectangular channel, half-circumferentially heated tube, and full-circumferentially heated tubes was examined. New CHF correlation for narrow rectangular channels and small-diameter tubes was proposed using the critical quality, dimensionless CHF parameter and heated perimeter ratio. Calculation accuracy of the correlation is ±45% (maximum 10 times better in comparison with the existing CHF calculation methods which were proposed for the full-circumferentially heated tubes).  相似文献   

10.
Experiments were conducted to investigate flow boiling in 200 μm × 253 μm parallel microchannels with structured reentrant cavities. Flow morphologies, boiling inceptions, heat transfer coefficients, and critical heat fluxes were obtained and studied for mass velocities ranging from G = 83 kg/m2 s to G = 303 kg/m2 s and heat fluxes up to 643 W/cm2. Comparisons of the performance of the enhanced and plain-wall microchannels were performed. The microchannels with reentrant cavities were shown to promote nucleation of bubbles and to support significantly better reproducibility and uniformity of bubble generation. The structured surface was also shown to significantly reduce the boiling inception and to enhance the critical heat flux.  相似文献   

11.
Liquid–vapor behavior close to a heating surface was measured using two conductance probes with tip diameters smaller than 5 μm. Measurements were carried out for water boiling on an upward-facing copper surface under subcooling from 0 to 30 K. The probe signals and the void fraction distributions showed that there is little difference in the liquid–vapor structure beneath large vapor masses in saturated and subcooled boiling, that a macrolayer remains on the heating surface, and that in subcooled boiling it does not dry out even at heat fluxes far higher than CHF for saturated boiling. The thickness of the macrolayer forming beneath large vapor masses was determined from the location where the probe signals corresponding to the large vapor masses disappear. It was found that the thicknesses of the macrolayer formed in subcooled boiling are comparable to or thicker than those near the CHF in saturated boiling, and it is considered that this is most likely to be one of the causes why the CHF increases with the increasing subcooling.  相似文献   

12.
Subcooled flow film boiling experiments were conducted on a vertical flat plate, 30.5 cm in height, and 3.175 cm wide with forced convective upflow of subcooled water at atmospheric pressure. Data have been obtained for mass fluxes ranging from 0 to 700 kg/m2s, inlet subcoolings ranging from 0 to 25 °C and wall superheats ranging from 200 to 400 °C. Correlations for wall heat transfer coefficient and wall heat flux partitioning were developed as part of this work. These correlations derive their support from simultaneous measurements of the wall heat flux, fluid temperature profiles, liquid side heat flux and interfacial wave behavior during steady state flow film boiling. A new correlation for the film collapse temperature was also deduced by considering the limiting case of heat flux to the subcooled liquid being equal to the wall heat flux. The premise of this deduction is that film collapse under subcooled conditions occurs when there is no net vapor generation. These correlations have also been compared with the data and correlations available in the literature.  相似文献   

13.
Convective boiling in transparent single microchannels with similar hydraulic diameters but different shaped cross-sections was visualized, along with simultaneous measurement of the local heat transfer coefficient. Two types of microchannels were tested: a circular Pyrex glass microtube (210 μm inner diameter) and a square Pyrex glass microchannel (214 μm hydraulic diameter). A 100-nm-thick semi-transparent ITO/Ag thin film sputtered on the outer wall of the microchannel was used for direct joule heating of the microchannel.The flow field visualization showed semi-periodic variation in the flow patterns in both the square and circular microchannels. Such variation was because the confined space limited the bubble growth in the radial direction.In the square microchannel, both the number of nucleation bubbles and the local heat transfer coefficient increased with decreasing vapor quality. The corners acted as active nucleation cavities, leading to the higher local heat transfer coefficient. In contrast, lack of cavities in the smooth glass circular microchannel yielded a relatively smaller heat transfer coefficient at lower vapor quality. Finally, the heat transfer coefficient was higher for the square microchannel because corners in the square microchannel acted as effective active nucleation sites.  相似文献   

14.
In this paper, a fractal model for the high heat flux nucleate boiling region and for the critical heat flux (CHF) is proposed. The expression for the critical heat flux (CHF) is derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for CHF is found to be a function of wall superheat, the contact angle and physical properties of fluid. The relation between CHF and the number of active nucleation sites is obtained from the fractal distribution of active nucleation sites on boiling surfaces. The contact angle and the physical properties of fluid have the important effects on CHF. The predicted CHF from a boiling surface based on the proposed fractal model is compared with the existing experimental data. An excellent agreement between the proposed model predictions and experimental data is found.  相似文献   

15.
Bubble growth behavior and heat transfer characteristics during subcooled flow boiling in segmented finned microchannels have been numerically investigated. Simulations have been performed for a single row of segmented finned microchannel and predicted results are compared with experimental investigations. Onset of nucleation, formation of bubbles, their growth and movements have been investigated for different values of applied heat flux. Mechanism of bubble expansion without clogging resulting in enhanced heat transfer in segmented finned microchannels has been explained. Temperature and pressure fluctuations during subcooled flow boiling condition have been investigated. It is observed that at high heat flux, thin liquid film trapped between the bubble and channel wall is evaporated leading to localized heating effect. Predicted flow patterns are similar to experimental results. However, simulations over predict the bubble growth rate and heat transfer coefficient.  相似文献   

16.
The present paper reports the results of a visualization study of the burnout in subcooled flow boiling of water, with square cross section annular geometry (formed by a central heater rod contained in a duct characterized by a square cross section). The coolant velocity is in the range 3–10 m/s. High speed movies of flow pattern in subcooled flow boiling of water from the onset of nucleate boiling up to physical burnout of the heater are recorded. From video images (single frames taken with a stroboscope light and an exposure time of 1 μs), the following general behaviour of vapour bubbles was observed: when the rate of bubble generation is increasing, with bubbles growing in the superheated layer close to the heating wall, their coalescence produces a type of elongated bubble called vapour blanket. One of the main features of the vapour blanket is that it is rooted to the nucleation site on the heated surface. Bubble dimensions are given as a function of thermal-hydraulic tested conditions for the whole range of velocity until the burnout region. A qualitative analysis of the behaviour of four stainless steel heater wires with different macroscopic surface finishes is also presented, showing the importance of this parameter on the dynamics of the bubbles and on the critical heat flux.  相似文献   

17.
Experimental studies on critical heat flux (CHF) have been conducted in a uniformly heated vertical tube of 12.7 mm internal diameter and 3 m length at different reduced pressures ranging from 0.24 to 0.99 with R-134a as the working fluid. The onset of CHF was determined by the sudden rise in the wall temperature of the electrically heated tube. Experiments were performed over a wide range of parameters: mass flux values from 200 to 2000 kg/m2 s, pressure from 10 to 39.7 bars and heat flux from 2 to 80 kW/m2 and exit quality from 0.17 to 0.94. The results show considerably lower critical heat flux at high pressures. Well known CHF prediction methods, such as the look-up table and correlations of earlier workers show poor agreement at high pressures. A new correlation has been proposed to estimate the CHF in uniformly heated vertical tubes up to the critical pressure and over a wide range of parameters.  相似文献   

18.
19.
Microchannel two‐phase flow is an effective cooling method used in microelectronics, in which the heat flux density is unevenly distributed usually. The paper is focused on numerical study the effect of aspect ratio on the flow boiling of microchannels with nonuniform heat flux. The heat source is a three‐dimensional (3D) integrated circuit. 3D microchannel model and volume of fluid method are coupled in numerical simulation. The results show that the aspect ratio has no relationship with the two‐phase pressure drop of the microchannel. It has a certain influence on the distribution of bubble shape. In terms of the heat transfer coefficient, the aspect ratio has a certain influence on a section of the inlet. Due to the nucleate boiling, the convective heat transfer in the remaining areas is the dominant factor and the average heat transfer coefficient is mainly determined by the heat flux at the bottom of the channel.  相似文献   

20.
The authors have conducted measurements of liquid–vapor behavior in the vicinity of a heating surface for saturated and subcooled pool boiling on an upward-facing copper surface by using a conductance probe method. A previous paper [A. Ono, H. Sakashita, Liquid–vapor structure near heating surface at high heat flux in subcooled pool boiling, Int. J. Heat Mass Transfer 50 (2007) 3481–3489] reported that thicknesses of a liquid rich layer (a so-called macrolayer) forming in subcooled boiling are comparable to or thicker than those formed near the critical heat flux (CHF) in saturated boiling. This paper examines the dryout behavior of the heating surface by utilizing the feature that a thin conductance probe placed very close to the heating surface can detect the formation and dryout of the macrolayer. It was found that the dryout of the macrolayer formed beneath a vapor mass occurs in the latter half of the hovering period of the vapor mass. Two-dimensional measurements conducted at 121 grid points in a 1-mm × 1-mm area at the center of the heating surface showed that the dryout commences at specific areas and spreads over the heating surface as the heat flux approaches the CHF. Furthermore, transient measurements of wall void fractions from nucleate boiling to transition boiling were conducted under the transient heating mode, showing that the wall void fraction has small values (<10%) in the nucleate boiling region, and then steeply increases in the transition boiling region. These findings strongly suggest that the macrolayer dryout model is the most appropriate model of the CHF for saturated and subcooled pool boiling of water on upward facing copper surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号