首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-凝胶法制备了Ce3 /TiO2光催化剂,研究了该催化剂对亚甲基蓝的光催化降解效果.结果表明掺杂量w(Ce3 )3.7%,催化剂用量0.12 g·L-1,体系pH值为10,12 mg·L-1亚甲基蓝溶液经2 h光催化降解,其降解率可达98.87%,与纯TiO2相比,Ce3 /TiO2光催化剂显示出良好的光催化活性.  相似文献   

2.
采用浸渍法制备了H6P2W18/TiO2-SiO2光催化剂,并采用傅里叶变换红外光谱(FT-IR)、X射线粉末衍射(XRD) 、扫描电子显微镜(SEM)对其进行了表征,通过光催化剂H6P2W18O62/TiO2-SiO2对甲基橙的研究,得出催化剂制备适宜条件为:H6P2W18O62的负载量为30%,催化剂活化温度为200 ℃,煅烧时间为3 h。以光催化降解染料废水甲基橙为探针反应, 探讨了甲基橙初始浓度,催化剂用量、溶液pH值对光催化降解效果的影响以及催化剂的重复使用性能. 结果表明,H6P2W18/TiO2-SiO2光催化剂表现出较高的光催化性能,在催化剂的用量为1.39 g/L,甲基橙溶液初始浓度为5 mg/L, 初始pH=3.5时, 反应时间为2.5 h优化条件下,甲基橙的降解率可达99.2%,且产生了协同效应. H6P2W18O62/TiO2-SiO2光催化剂对亚甲基蓝、罗丹明B和甲基红均具有较高的光催化性能,降解率达84.0%~100.0%. 光催化剂还表现出较好的重复使用性能,第5次降解率仍为94.4%.  相似文献   

3.
Nd2O3/TiO2光催化剂的光生羟基自由基和光活性   总被引:2,自引:0,他引:2  
以硝酸钕和钛酸四正丁酯作为前驱体,采用溶胶-凝胶法制备了Nd2O3/TiO2纳米光催化剂,并通过XRD和BET等手段进行了表征.以对苯二甲酸作为探针分子,结合化学荧光技术研究了光催化剂表面羟基自由基的生成;并以甲基橙为光催化降解反应模型化合物,考察了光催化剂的活性.测定了甲基橙在TiO2和Nd2O3/TiO2(1.0%)光催化剂上的吸附常数.结果表明:Nd2O3掺杂使TiO2的粒径减小,比表面积增大;羟基自由基的生成速率越大,催化剂的催化活性越高.Nd2O3掺杂有利于反应底物在催化剂表面的吸附,Nd2O3的最佳掺入量为Nd/Ti(摩尔比)=1.0%.  相似文献   

4.
TiO2/SiO2/Fe3O4的光催化性能及动力学   总被引:7,自引:2,他引:5  
采用溶胶-凝胶法在表面包覆了SiO2的磁基体Fe3O4上负载TiO2,制备了复合光催化剂TiO2/SiO2/Fe3O4。用AFM和XRD等对其进行了表征,并对其光催化降解溴氨酸的pH值、催化剂加入量、初始溶液浓度等条件进行了探讨。结果表明,当pH=4.0、催化剂用量为2.0 g/L、初始溶液浓度为30 mg/L、光照时间为30 min时,溴氨酸脱色率可达96.2%,COD去除率为85.1%;动力学研究表明:在实验浓度范围内,溴氨酸的光催化降解反应符合一级动力学规律,反应速率常数(k)与初始溶液浓度(c0)的关系为lnk =-0.171lnc0-2.360;经过4次循环使用后,复合光催化剂仍能保持较高的光催化活性和较高的回收率。  相似文献   

5.
采用溶胶-凝胶法制备了La^3+/TiO2光催化剂,研究了该催化剂对亚甲基蓝的光催化降解效果。结果表明,La^3+掺杂量(摩尔分数)2.8%、催化剂用量1.2g/L、体系pH值为11时,12mg/L亚甲基蓝溶液经2h光催化降解,其降解率可达99.1%。与纯TiO2相比,La^3+/TiO2光催化剂显示出良好的光催化活性。  相似文献   

6.
Al_2O_3负载TiO_2光催化氧化剂的制备与性能试验   总被引:1,自引:2,他引:1  
以钛酸四丁酯为钛源、Al2O3为载体,采用浸渍法制备了一系列TiO2/Al2O3复合氧化物光催化剂。以光催化降解甲醛为探针反应,考察了催化剂的光催化活性。并采用XRD、SEM技术对催化剂进行了表征。考察了催化剂的焙烧温度、钛含量、反应温度等因素对甲醛光催化降解率的影响。结果表明:400℃是制备TiO2/Al2O3光催化剂的最佳焙烧温度;在TiO2负载质量为5.0%的复合氧化物光催化剂催化效果最好,甲醛的降解率达到58.4%。随着反应温度的升高,复合氧化物光催化剂的催化性能下降,由25℃时的58.4%的甲醛降解率下降到50℃时的4.8%。  相似文献   

7.
以Ti(C4H9O)4为前驱体,CH3COOH为水解抑制剂,通过溶胶-凝胶法制备了TiO_2/Fe2O3复合光催化剂。对复合光催化剂的光催化活性、光催化机理和光催化降解动力学进行了研究。研究表明,Fe2O3的引入有助于光生电子-空穴对的分离,从而提升TiO_2的光催化活性。TiO_2/Fe2O3的光催化降解动力学符合L-H动力学模型的一级反应方程模型,整个光催化反应的控制步骤为降解物在光催化剂表面的有效吸附,动力学反应级数随着降解物浓度的上升而逐渐下降。  相似文献   

8.
以Ti(C4H9O)4为前驱体,CH3COOH为水解抑制剂,通过溶胶-凝胶法制备了TiO_2/Fe2O3复合光催化剂。对复合光催化剂的光催化活性、光催化机理和光催化降解动力学进行了研究。研究表明,Fe2O3的引入有助于光生电子-空穴对的分离,从而提升TiO_2的光催化活性。TiO_2/Fe2O3的光催化降解动力学符合L-H动力学模型的一级反应方程模型,整个光催化反应的控制步骤为降解物在光催化剂表面的有效吸附,动力学反应级数随着降解物浓度的上升而逐渐下降。  相似文献   

9.
王丽  赵辉  陈永 《广州化工》2013,(10):122-124
水热法合成TiO2纳米管,以Fe(NO3)3为前驱体制备Fe3+掺杂TiO2纳米管(Fe2O3/TiO2),并系统研究其光催化降解染料废水活性。结果表明,Fe3+掺杂能有效提高TiO2纳米管光催化降解染料废水效果,其中Fe2O3掺杂量为4%(ω)时,其光催化性能最好,最高降解率可达99%,且具有较好的稳定性。研究证实,Fe2O3/TiO2复合材料具有良好的光催化降解亚甲基蓝染料废水性能。  相似文献   

10.
Fe3+/TiO2光催化剂降解孔雀绿染料的研究   总被引:10,自引:0,他引:10  
采用快速溶胶法制备纳米TiO2光催化剂,用Fe^3 对其掺杂改性,并进行了催化剂的X-射线衍射分析(XPd3),傅立叶红外光谱分析(FT-IR),BET比表面积的表征,用于光催化降解水中孔雀绿染料的研究.研究了不同催化剂的光催化活性,确定了光催化剂的用量.结果发现60W紫外光辐射80min,孔雀绿可以彻底降解;可见光下,光催化剂对孔雀绿降解120h,其转化率为98%,COD的去除率为75.3%。可见光下孔雀绿的脱色率和COD的变化不一致,并对其产生的原因和孔雀绿的光催化降解机理作了探讨。孔雀绿的光催化降解符合一级动力学反应规律,反应速率常数随催化剂的用量增加而增大,但增大幅度逐渐减小。  相似文献   

11.
TiO2/浮石光催化降解活性艳红X-3B的中试研究   总被引:2,自引:0,他引:2  
采用TiO2/浮石悬浮态光催化剂,对活性艳红X-3B模拟废水进行了光催化降解的中试研究.考察了催化剂投加量、曝气量、溶液pH、投加助剂H2O2、污染物初始浓度对光催化效率的影响.结果表明,TiO2/浮石在中试条件下对活性艳红X-3B有较好的降解效果;催化剂最佳投加质量浓度为45g/L,增大曝气量和pH,适当投加助剂H2O2有利于光催化降解效率的提高;活性艳红X-3B的光催化降解过程符合负一级反应动力学规律,反应速率常数与活性艳红X-3B模拟废水初始浓度之间具有近似负一级的动力学关系.  相似文献   

12.
勾华  罗宿星  伍远辉 《化学世界》2008,49(2):71-74,92
制备了新型固载杂多酸盐光催化荆Ti3(PW12O40)4/TiO2-WO3,并用傅里叶红外光谱法、X衍射法等对其进行了表征.以光催化降解染料废水甲基橙为探针反应,用正交实验考察了制备条件对催化剂的光催化活性的影响.探讨了催化荆投加量,溶液pH值,甲基橙初始浓度等对光催化降解效果的影响以及催化剂的重复使用性.最后,测定了反应动力学参数.  相似文献   

13.
TiO2.Al2O3/beads光活性的研究   总被引:8,自引:0,他引:8  
研究以空心玻璃微球为载体,用溶胶-凝胶法制备附载型复合光催催化剂的过程。对TiO2.Al2O3/beads光催化活性进行评价,并利用XRD、TEM、SEM对附载型复合光催化剂进行表征,同时对TiO2.Al2O3/beads折吸附性和比表面进行测试,结果表明,附载型复合光催化剂TiO2.Al2O3/beads光活性显著提高且组分摩尔比存在在最佳值,当n(TiO2)/m(Al2O3)=97/3时,其最高光解率为同样降解条件下,同样含量DegussaP-25TiO2光解率的1.5倍左右。探讨了TiO2.Al2O3/beads光活性提高的主要因素,认为纳米尺寸TiO2和TiO2.Al2O3/beads吸附性是光活性提高的最主要因素,另外,活化条件和比表面也是影响光活性的主要因素。  相似文献   

14.
孙旋  刘红  倪昕 《水处理技术》2008,34(4):61-64
以Fe2(SO4),和Ti(SO4)2为原料,采用乙醇助水热法,在较低的温度下制备了Fe2O3-TiO:复合光催化剂,并用X射线衍射(XRD),紫外可见漫反射光谱(UV-vis)对其进行了表征.用该催化剂在自制的三相光催化反应器中进行催化降解碱性嫩黄的试验,探讨了催化剂投加量、溶液pH值、溶液浓度对降解率的影响.结果表明:在浓度为25mg/L、pH-9的碱性嫩黄溶液中,投加0.8g/L的光催化剂,紫外光照120min后,降解率达90.7%.动力学分析表明:在试验浓度范围内,碱性嫩黄的光催化降解反应符合一级动力学方程.  相似文献   

15.
林晓  袁斌  唐春保 《辽宁化工》2006,35(7):375-378
以硅酸钠为粘结剂,将纳米TiO2固定在焦炭载体上,制备了负载型纳米TiO2光催化剂。在紫外灯和太阳光分别照射下,对酸性蓝染料进行光催化降解研究。探讨了催化剂投加量、外加氧化剂量和反应时间等因素对光催化降解反应的影响。结果表明:在紫外光照射下,催化剂用量1 g/L、10%H2O2用量0.2 mL、浓度20 mg/L的酸性蓝染料经40 min处理,其脱色率达到93%;若改用太阳光照射,其脱色率则达到96%,证明光催化氧化法可以有效地降解酸性蓝染料。此外,还对负载型TiO2催化降解酸性蓝染料的机理进行了初步探讨。  相似文献   

16.
Cu2O光催化还原含铬(Ⅵ)废水的研究   总被引:2,自引:0,他引:2  
采用亚硫酸钠还原法制备了Cu2O光催化剂,并将其应用于含铬(Ⅵ)废水降解还原的光催化反应,同时与Bi2WO6、TiO2等光催化剂进行了活性比较.研究表明,在300W高压汞灯照射下反应1.5 h,Cu2O、Bi2WO6和TiO2光催化剂对铬(Ⅵ)的光催化还原降解率分别为69.5%、61.5%和44.2%,与其禁带宽度(2.O eV、3.O eV、3 2 eV)成反比,Cu2O较窄的禁带宽度使其具有良好的光催化活性.Cu2O光催化还原铬(Ⅵ)废水的适宜工艺条件为:废水的pH为3.O,Cu2O光催化剂用量为0.25 g·L-1.在上述工艺条件下,300W高压汞灯光照反应时间4 h后,废水中的铬(Ⅵ)有82%被还原.采用微分法对Cu2O光催化还原含铬(Ⅵ)废水反应进行了化学动力学研究,其光催化反应速率方程为:v=0.681CCr2.7.  相似文献   

17.
采用溶胶-凝胶法制备的Mg掺杂TiO2光催化剂降解孔雀石绿(MG)染料废水,考察了MG初始浓度、催化剂加入量等因素对其降解的影响。结果表明,Mg的掺杂显著提高了TiO2光催化降解孔雀石绿的活性,当催化剂用量为1.0 g/L,经120 min紫外光照射后,可使30 mg/L孔雀石绿溶液降解率达到84%,同时讨论了光催化机制。  相似文献   

18.
采用改进的Hummers法制备氧化石墨烯,在此基础上以该GO为载体,通过浸渍-沉淀法在其表面合成TiO2纳米粒子,再通过450℃的焙烧形成TiO2/GO二元复合光催化剂,研究复合光催化剂在紫外光下降解甲基橙的动力学及活性变化规律。使用透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)和紫外可见漫反射光谱等分析了复合光催化剂的形貌、TiO2粒子的结晶状态以及催化剂的光吸收。结合光催化降解甲基橙实验,探索了复合光催化剂中TiO2含量对其光催化活性的影响。研究结果表明,在TiO2质量分数低于20%时,复合光催化剂中TiO2均匀分散于GO表面;质量分数超过20%复合催化剂中将会有少量TiO2团聚体出现。由于氧化石墨烯的协同效应,紫外光下TiO2/GO复合催化剂的光催化活性要远高于TiO2光催化剂。  相似文献   

19.
在薄膜TiO2/γ -Al2O3和粉末TiO2上光催化降解苯酚的研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法分别制备了薄膜状TiO2/( -Al2O3和粉末状TiO2光催化剂;利用扫描电镜、X射线衍射及降解苯酚的催化活性评价等手段对薄膜状TiO2/( -Al2O3和粉末状TiO2进行了表征。实验结果表明,500℃热处理3h时,TiO2的晶型是锐钛矿型,用于光催化降解苯酚时显示了较高的活性,且薄膜状TiO2/( -Al2O3的光催化活性高于粉末状TiO2。  相似文献   

20.
《应用化工》2022,(5):974-977
采用凝胶-溶胶法制备了纳米氧化亚铜(A-Cu_2O),与多壁碳纳米管复合制备了Nano-Cu_2O/MWCNTs复合微球。以高压汞灯为光源,研究了Nano-Cu_2O/MWCNTs、A-Cu_2O和氧化亚铜(B-Cu_2O)光催化降解刚果红染料废水的效果,考察了光催化剂用量、溶液起始pH值对刚果红染料废水的降解效率的影响。结果表明,在相同条件下,Nano-Cu_2O/MWCNTs的光催化降解刚果红的效果优于A-Cu_2O和B-Cu_2O;在常温下,进行光催化降解10 mg/L刚果红溶液,复合光催化剂最佳加入量为1.5 g/L,溶液起始pH=7时,反应3 h后,COD去除率达到88.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号