首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study reports a method to prepare fully aromatic poly(ether ketone) thermosets. The cyclization of 2′,5′‐dimethoxy[1,1′‐biphenyl]‐2,5‐diol and a difluoro monomer was carried out under pseudo high dilution condition. Two types of fully aromatic poly(ether ketone)s with macrocycle were successfully prepared by copolymerization of macrocycle of aryl ether ketone containing hydroxyphenyl groups, 4,4′‐(hexafluoroisopropylidene)diphenol (HFBPA), and 4,4‐difluorobenzophenone. The obtained copolymers have high molecular mass, good solubility, and high glass transition temperatures in the presence of CsF, the crosslinking reaction of copolymers occurred and afforded fully aromatic thermoset poly(aryl ether ketone)s by ring‐opening reaction driven by entropy. After crosslinking, these copolymers show much higher glass transition temperatures, excellent thermal stability, and better mechanical strength. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7002–7010, 2008  相似文献   

2.
New aromatic tetracarboxylic dianhydride, having isopropylidene and bromo‐substituted arylene ether structure 3,3′,5,5′‐tetrabromo‐2,2‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride, was synthesized by the reaction of 4‐nitrophthalonitrile with 3,3′,5,5′‐tetrabromobisphenol A, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). The novel aromatic polyetherimides having inherent viscosities up to 1.04 dL g−1 were obtained by either a one‐step or a conventional two‐step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), N‐methyl‐2‐pyrrolidone (NMP), pyridine, and even in less polar solvents like chloroform and tetrahydrofuran (THF). These aromatic polyimides had glass transition temperatures in the range of 256–303°C, depending on the nature of the diamine moiety. Thermogravimetric analysis (TGA) showed that all polymers were stable, with 10% weight loss recorded above 470°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1673–1680, 1999  相似文献   

3.
New aromatic diamines substituted with a trifluoromethyl group in the side chain, 2,4‐diamino‐3′‐trifluoromethylazobenzene, 2,4‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] aniline, and 3,5‐diamino‐1‐[(4′‐trifluoromethyl phenoxy) phenyl] benzamide were synthesized and characterized and used to prepare polyimides by a one‐step high‐temperature polycondensation method. Experimental results indicated that the prepared polyimides possess good solubility in strong organic solvents such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylformamide, and N,N′‐dimethylacetamide. Homogeneous solutions with solid contents as high as 15–20% can be prepared, which are stable for storing longer than 2 weeks at room temperature. The polyimides exhibited glass‐transition temperatures of 249–292 °C and good thermal stability. The PI‐Ic and PI‐IIIc films prepared by casting the fully imidized polymer solutions showed good transparency with cutoff wavelengths at 320–330 nm. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1572–1582, 2002  相似文献   

4.
A new fluorinated diamine monomer, 2′,5′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐p‐terphenyl, was synthesized from the chloro‐displacement of 2‐chloro‐5‐nitrobenzotrifluoride with the potassium phenolate of 2,5‐diphenylhydroquinone, followed by hydrazine palladium‐catalyzed reduction. A series of trifluoromethyl‐substituted polyimides containing flexible ether linkages and laterally attached side rods were synthesized from the diamine with various aromatic dianhydrides via a conventional two‐step process. The inherent viscosities of the poly(amic acid) precursors were 0.84–1.26 dL/g. All the polyimides afforded flexible and tough films. The use of 4,4′‐oxydiphthalic anhydride and 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride produced essentially colorless polyimide films. Most of the polyimides revealed an excellent solubility in many organic solvents. The glass‐transition temperatures of these polyimides were recorded between 254 and 299 °C by differential scanning calorimetry, and the softening temperatures of the polymer films stayed in the range of 253–300 °C according to thermomechanical analysis. The polyimides did not show significant decomposition before 500 °C in air or under nitrogen. These polyimides also showed low dielectric constants (2.83–3.34 at 1 MHz) and low moisture absorption (0.4–2.2%). For a comparative study, a series of analogous polyimides based on the nonfluorinated diamine 2′,5′‐bis(4‐aminophenoxy)‐p‐terphenyl were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1255–1271, 2004  相似文献   

5.
A novel, fluorinated diamine monomer with the ether–ketone group, 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzophenone ( 2 ), was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 4,4′‐dihydroxybenzophenone in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Flourinated polyimides (PIs) 5a – f and copolyimides (co‐PIs) 5c / a – f were synthesized from 2 and various commercial aromatic dianhydrides via thermal or chemical imidization. PIs 5a – f had inherent viscosities ranging from 0.72 to 1.22 dL/g. Besides the chemical imidization of 5c ( C ), the 5 ( C ) series were soluble in amide‐type solvents and even in less polar solvents, but PIs 5a – f prepared via thermal imidization were insoluble. PI films 5a – f exhibited tensile strengths ranging from 92 to 112 MPa, elongations at break from 8 to 15%, and initial moduli from 2.0 to 2.1 GPa. The glass‐transition temperatures of the 5 series were in the range of 232–278 °C, and the 10% weight‐loss temperatures were above 535 °C, with more than a 50% char yield at 800 °C in nitrogen. In comparison of the PI 5 series with the analogous non‐fluorinated PIs 6 series based on 4,4′‐bis(4‐aminophenoxy)benzophenone, the 5 series revealed better solubility, lower color intensity, dielectric constant, and moisture absorption. Their PI films had cutoff wavelengths between 370 and 410 nm, b* values ranging from 9.6 to 58.3, dielectric constants of 3.05–3.64 (1 MHz), with moisture absorption in the range of 0.08–0.38 wt %. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 222–236, 2004  相似文献   

6.
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004  相似文献   

7.
The synthesis of aromatic poly(ether imide)s containing spirobifluorene units in the polymer backbone is described. 2,2′‐Bis(3,4‐dicarboxyphenoxy)‐9,9′‐spirobifluorene dianhydride, which was used as a new monomer, was synthesized with 2,2′‐dihydroxy‐9,9′‐spirobifluorene as the starting material. In the spiro‐segment, the rings of the connected bifluorene were orthogonally arranged. This bis(ether anhydride) monomer was employed in reactions with a variety of aromatic diamines to furnish poly(ether imide)s, involving an initial ring‐opening polycondensation and subsequent chemically induced cyclodehydration. Excellent solubility in common organic solvents at room temperature, good optical transparency, and high thermal stability are the prominent characteristic features of these new polymers, which can be attributed to the presence of spiro‐fused orthogonal bifluorene segments along the polymer chain. The glass‐transition temperatures of the polyimides were 240–293 °C, and the 5% weight‐loss temperatures were greater than 500 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 262–268, 2002  相似文献   

8.
The synthesis of a new A2X‐type difluoride monomer, N‐2‐pyridyl‐4′,4″‐bis‐(4‐fluorobenzenesulfonyl)‐o‐terphenyl‐3,6‐dimethyl‐4,5‐dicarboxylic imide ( 3 ), is described. The monomer 3 was incorporated into a series of copoly(aryl ether sulfone)s by polymerization of 4,4′‐isopropylidenediphenol and 4,4′‐difluorophenylsulfone. The incorporation of monomer 3 had an observable effect on both the glass‐transition temperature of poly(aryl ether sulfone)s and the tendency for macrocyclic oligomers to form during polymerization. Replacement of the pyridyl imide group via a transimidization reaction with propargyl amine proceeded quantitatively and without polymer degradation. The acetylene containing copoly(aryl ether sulfone) could be crosslinked by simple thermal treatment, resulting in an increase in the glass‐transition temperature and solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 9–17, 2000  相似文献   

9.
New fluorinated aromatic polyimides were prepared from 1,4‐(4′‐aminophenoxy)‐2‐(3′‐trifluoromethylphenyl)benzene and aromatic dianhydrides via the polycondensation of one‐step high‐temperature and two‐step thermal or chemical imidization methods. Experimental results indicated that some of the polyimides were soluble both in strong dipolar solvents (N‐methyl‐2‐pyrrolidone or N,N‐dimethylacetamide) and in common organic solvents such as tetrahydrofuran, CHCl3, and acetone. The polyimides showed exceptional thermal and thermooxidative stability and good mechanical properties. No weight loss was detected before a temperature of 520 °C in nitrogen, and the glass‐transition temperatures ranged from 208 to 251 °C. Low dielectric constants (2.55–2.71 at 1 MHz), low refractive indices, and low water absorption were also observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2404–2413, 2001  相似文献   

10.
A series of macrocyclic aryl ketone oligomers were prepared by the reaction of phthaloyl dichloride or isophthaloyl dichloride with various bridge‐linking electron‐rich aromatic hydrocarbons 3a–d under pseudo‐high dilution conditions in the presence of Lewis base via Friedel–Crafts acylation reaction. Detailed structural characterization of these oligomers confirmed the cyclic nature by a combination of MALDI‐TOF‐MS, GPC, and 1H NMR analyses. These cyclic ketone oligomers have high solubility in organic solvents and the cyclic oligomers derived from phthaloyl dichloride are amorphous. The cyclic ketone oligomers readily undergo anionic ring‐opening polymerization in the melt by using potassium 4,4′‐biphenoxide as the initiator, producing linear, high molecular weight poly(ether ketone)s. Moreover, the isothermal chemorheology of the ring‐opening polymerization of cyclic oligomers 4a and 4b was also investigated. The results show that the shear viscosity of the molten reactive mixture is lower than 10 Pa · S at a constant shear rate of 0.05 rad/sec and increases slowly in the initial stage of ring‐opening polymerization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A series of molecular‐weight‐controlled fluorinated aromatic polyimides were synthesized through the polycondensation of a fluorinated aromatic diamine, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, with 4,4′‐oxydiphthalic anhydride in the presence of phthalic anhydride as the molecular‐weight‐controlling and end‐capping agent. Experimental results demonstrated that the resulting polyimides could melt at temperatures of 250–300 °C to give high flowing molten fluids, which were suitable for melt molding to give strong and flexible polyimide sheets. Moreover, the aromatic polyimides also showed good solubility both in polar aprotic solvents and in common solvents. Polyimide solutions with solid concentrations higher than 25 wt % could be prepared with relatively low viscosity and were stable in storage at the ambient temperature. High‐quality polyimide films could be prepared via the casting of the polyimide solutions onto glass plates, followed by baking at a relatively low temperature. The molten behaviors and organosolubility of the molecular‐weight‐controlled aromatic polyimides depended significantly on the polymer molecular weights. Both the melt‐molded polyimide sheets and the solution‐cast polymer films exhibited outstanding combined mechanical and thermal properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1997–2006, 2006  相似文献   

12.
A new trifluoromethyl‐substituted bis(ether amine) monomer, 2,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized. It led to a series of novel fluorinated polyimides by thermal and chemical imidization routes when reacted with various commercially available aromatic tetracarboxylic dianhydrides. Most of the polyimides obtained from both routes were soluble in many organic solvents, such as N,N‐dimethylacetamide. All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.3–0.6%, low dielectric constants of 2.52–3.27 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 377–436 nm. The glass‐transition temperatures of the polyimides were in the range of 244–297 °C, and the 5% weight‐loss temperatures were higher than 550 °C. For a comparative study, a series of analogous polyimides based on 2,7‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2001–2018, 2003  相似文献   

13.
A new aromatic, unsymmetrical ether diamine with a trifluoromethyl pendent group, 1,4‐(2′‐trifluoromethyl‐4′,4″‐diaminodiphenoxy)benzene, was successfully synthesized in three steps with hydroquinone as a starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, 2,2′‐bis(3,4‐dicarboxyphenyl)‐hexafluoropropane dianhydride, and pyromellitic dianhydride, via a conventional two‐step thermal or chemical imidization method to produce a series of fluorinated polyimides. The polyimides were characterized with solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X‐ray diffraction studies, and thermogravimetric analysis. The polyimides had inherent viscosities of 0.56–0.77 dL/g and were easily dissolved in both polar, aprotic solvents and common, low‐boiling‐point solvents. The resulting strong and flexible polyimide films exhibited excellent thermal stability, with decomposition temperatures (at 5% weight loss) above 522 °C and glass‐transition temperatures in the range of 232–272 °C. Moreover, the polymer films showed outstanding mechanical properties, with tensile strengths of 74.5–121.7 MPa, elongations at break of 6–13%, and initial moduli of 1.46–1.95 GPa, and good dielectric properties, with low dielectric constants of 1.82–2.53 at 10 MHz. Wide‐angle X‐ray diffraction measurements revealed that these polyimides were predominantly amorphous. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced microelectronic applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6836–6846, 2006  相似文献   

14.
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
2,2,′3,3′‐Biphenyltetracarboxylic dianhydride (2,2,′3,3′‐BPDA) was prepared by a coupling reaction of dimethyl 3‐iodophthalate. The X‐ray single‐crystal structure determination showed that this dianhydride had a bent and noncopolanar structure, presenting a striking contrast to its isomer, 3,3,′4,4′‐BPDA. This dianhydride was reacted with aromatic diamines in a polar aprotic solvent such as N,N‐dimethylacetamide (DMAc) to form polyamic acid intermediates, which imidized chemically to polyimides with inherent viscosities of 0.34–0.55 dL/g, depending on the diamine used. The polyimides from 2,2,′3,3′‐BPDA exhibited a good solubility and were dissolved in polar aprotic solvents and polychlorocarbons. These polyimides have high glass transition temperatures above 283°C. Thermogravimetric analyses indicated that these polyimides were fairly stable up to 500°C, and the 5% weight loss temperatures were recorded in the range of 534–583°C in nitrogen atmosphere and 537–561°C in air atmosphere. All polyimides were amorphous according to X‐ray determination. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1425–1433, 1999  相似文献   

16.
A series of aromatic polyimides (PIs) containing pyridazine or pyrimidine in their main chains has been developed. All of the PIs were prepared from newly synthesized diamines, 3,6‐bis(4‐aminophenylenesulfanyl)pyridazine (APP), 4,6‐bis(4‐aminophenylenesulfanyl)pyrimidine (APPM) and aromatic dianhydrides, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA) and 4,4′‐oxydiphthalic anhydride (ODPA) via the conventional two‐step polycondensation. The PIs showed good thermal stability with 10% weight loss at temperatures above 450 °C and glass transition temperatures above 190 °C. Films with a 10‐μm thickness exhibited good optical transparency above 80% at 500 nm, high refractive indices ranging from 1.7218 to 1.7499, and low birefringence between 0.0066 and 0.0102. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4886–4984, 2009  相似文献   

17.
New phenolic hydroxyl‐pendant aromatic polyimides were synthesized with the N‐silylated diamine method in two steps: the ring‐opening polyaddition of tetrakis(trimethylsilyl)‐substituted 4,4′‐diamino‐3,3′‐dihydroxybiphenyl to various aromatic tetracarboxylic dianhydrides, giving trimethylsiloxy‐pendant poly(amic acid) trimethylsilyl esters, and thermal imidization. The hydroxyl‐bearing polyimides were amorphous but insoluble in organic solvents. They had glass‐transition temperatures greater than 370 °C and temperatures of 10% weight loss greater than 415 °C in nitrogen. The hydroxyl‐pendant polypyromellitimide film had a high tensile strength and a high modulus of 310 MPa and 10 GPa, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1790–1795, 2002  相似文献   

18.
A novel fluorinated aromatic diamine, 1,1‐bis(4‐amino‐3,5‐dimethylphenyl)‐1‐(3,5‐ditrifluoromethylphenyl)‐2,2,2‐trifluoroethane (9FMA), was synthesized by the coupling reaction of 3′,5′‐ditrifluoromethyl‐2,2,2‐trifluoroacetophenone with 2,6‐dimethylaniline under the catalysis of 2,6‐dimethylaniline hydrochloride. A series of fluorinated aromatic polyimides were synthesized from 9FMA and various aromatic dianhydrides, including pyromellitic dianhydride, 3,3′4,4′‐biphenyl tetracarboxylic dianhydride, 4,4′‐oxydiphthalic anhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), and 4,4′‐hexafluoroisopropylidene diphthalic anhydride, via a high‐temperature, one‐stage imidization process. The inherent viscosities of the polyimides ranged from 0.37 to 0.74 dL/g. All the polyimides were quickly soluble in many low‐boiling‐point organic solvents such as tetrahydrofuran, chloroform, and acetone as well as some polar organic solvents such as N‐methyl‐2‐pyrrolidinone, N,N′‐dimethylacetamide, and N,N′‐dimethylformamide. Freestanding fluorinated polyimide films could be prepared and exhibited good thermal stability with glass‐transition temperatures of 298–334 °C and outstanding mechanical properties with tensile strengths of 69–102 MPa and elongations at break of 3.3–9.9%. Moreover, the polyimide films possessed low dielectric constants of 2.70–3.09 and low moisture absorption (<0.58%). The films also exhibited good optical transparency with a cutoff wavelength of 303–351 nm. One polyimide (9FMA/BTDA) also exhibited an intrinsic negative photosensitivity, and a fine pattern could be obtained with a resolution of 5 μm after exposure at the i‐line (365‐nm) wavelength. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2665–2674, 2006  相似文献   

19.
Geveral new polyimides were prepared from the reaction of four aromatic dianhydrides with four new diamines containing carbonyl and ether connecting groups between the aromatic rings. The diamines were prepared from the reaction of 4-aminophenol with activated aromatic difluoro compounds in the presence of potassium carbonate. Several of these polyimides were shown to be semicrystalline as evidenced by wide angle x-ray diffraction and differential scanning calorimetry. Glass transition temperatures ranged between 192 and 247°C and crystalline melt temperatures were observed between 350 and 442°C. The polyimide from the reaction of 3,3′,4,4′-benzophenonetetracarboxylic acid dianhydride and 1,3-bis(4-aminophenoxy-4′-benzoyl)benzene provided a semicrystalline solvent resistant transparent film with high tensile properties and compression molded compact tension specimens with high fracture toughness.  相似文献   

20.
A novel diamine, bis(3‐aminophenyl)‐4‐(1‐adamantyl)phenoxyphenyl phosphine oxide (mDAATPPO), was synthesized via the Williamson ether reaction of 4‐(1‐adamantyl)phenol and bis(3‐nitrophenyl)‐4‐fluorophenyl phosphine oxide, followed by reduction. The phenol group was prepared by the Friedel–Crafts reaction of 1‐bromoadamantane and phenol, whereas the phosphine oxide group was synthesized by the Grignard reaction of 1‐bromo‐4‐fluorobezene and diphenyl phosphinic chloride, followed by nitration. The monomer and its intermediate compounds were characterized with Fourier transform infrared, NMR, and melting‐point apparatus. The monomer was then used to prepare polyimides with 2,2‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride, 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride, 4,4′‐oxydiphthalic dianhydride, and pyromellitic dianhydride by the conventional two‐step synthesis: the preparation of poly(amic acid) followed by solution imidization. The molecular weights of the polyimides were controlled to 20,000 g/mol by off‐stoichiometry, and the synthesized polyimides were characterized with Fourier transform infrared, NMR, gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. In addition, the solubility, intrinsic viscosity, dielectric constant, and birefringence of the polyimides were evaluated. Novel polyimides with mDAATPPO exhibited good solubility, high glass‐transition temperatures (290–330 °C), excellent thermal stability (>500 °C), low dielectric constants (2.77–3.01), low refractive indices, and low birefringence values (0.0019–0.0030). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2567–2578, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号