首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design.  相似文献   

2.
The well‐matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high‐performance asymmetric supercapacitors. Herein, a facile and cost‐effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene‐MnO2 (G‐MnO2) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO2‐intercalated graphite oxide (GO‐MnO2) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in‐between the sheets, resulting in a high volumetric capacitance of 366 F cm–3, almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G‐MnO2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg–1 and 54.4 Wh L–1 (based on total volume of two electrodes) in 1 m Na2SO4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes.  相似文献   

3.
3D graphene networks have shown extraordinary promise for high‐performance electrochemical devices. Herein, the chemical vapor deposition synthesis of a highly porous 3D graphene foam (3D‐GF) using naturally abundant calcined Iceland crystal as the template is reported. Intriguingly, the Iceland crystal transforms to CaO monolith with evenly distributed micro/meso/macropores through the releasing of CO2 at high temperature. Meanwhile, the hierarchical structure of the calcined template could be easily tuned under different calcination conditions. By precisely inheriting fine structure from the templates, the as‐prepared 3D‐GF possesses a tunable hierarchical porosity and low density. Thus, the hierarchical pores offer space for guest hybridization and provide an efficient pathway for ion/charge transport in typical energy conversion/storage systems. The 3D‐GF skeleton electrode hybridized with Ni(OH)2/Co(OH)2 through an optimal electrodeposition condition exhibits a high specific capacitance of 2922.2 F g−1 at a scan rate of 10 mV s−1, and 2138.4 F g−1 at a discharge current density of 3.1 A g−1. The hybrid 3D‐GF symmetry supercapacitor shows a high energy density of 83.0 Wh kg−1 at a power density of 1011.3 W kg−1 and 31.4 Wh kg−1 at a high power density of 18 845.2 W kg−1. The facile fabrication process enables the mass production of hierarchical porous 3D‐GF for high‐performance supercapacitors.  相似文献   

4.
The voltage limit for aqueous asymmetric supercapacitors is usually 2 V, which impedes further improvement in energy density. Here, high Na content Birnessite Na0.5MnO2 nanosheet assembled nanowall arrays are in situ formed on carbon cloth via electrochemical oxidation. It is interesting to find that the electrode potential window for Na0.5MnO2 nanowall arrays can be extended to 0–1.3 V (vs Ag/AgCl) with significantly increased specific capacitance up to 366 F g?1. The extended potential window for the Na0.5MnO2 electrode provides the opportunity to further increase the cell voltage of aqueous asymmetric supercapacitors beyond 2 V. To construct the asymmetric supercapacitor, carbon‐coated Fe3O4 nanorod arrays are synthesized as the anode and can stably work in a negative potential window of ?1.3 to 0 V (vs Ag/AgCl). For the first time, a 2.6 V aqueous asymmetric supercapacitor is demonstrated by using Na0.5MnO2 nanowall arrays as the cathode and carbon‐coated Fe3O4 nanorod arrays as the anode. In particular, the 2.6 V Na0.5MnO2//Fe3O4@C asymmetric supercapacitor exhibits a large energy density of up to 81 Wh kg?1 as well as excellent rate capability and cycle performance, outperforming previously reported MnO2‐based supercapacitors. This work provides new opportunities for developing high‐voltage aqueous asymmetric supercapacitors with further increased energy density.  相似文献   

5.
In this work, MnO2/GO (graphene oxide) composites with novel multilayer nanoflake structure, and a carbon material derived from Artemia cyst shell with genetic 3D hierarchical porous structure (HPC), are prepared. An asymmetric supercapacitor has been fabricated using MnO2/GO as positive electrode and HPC as negative electrode material. Because of their unique structures, both MnO2/GO composites and HPC exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high voltage range of 0–2 V in aqueous electrolyte, which exhibits maximum energy density of 46.7 Wh kg?1 at a power density of 100 W kg?1 and remains 18.9 Wh kg?1 at 2000 W kg?1. Additionally, such device also shows superior long cycle life along with ~100% capacitance retention after 1000 cycles and ~93% after 4000 cycles.  相似文献   

6.
A composite of graphene and carbon nanotubes has been synthesized and characterized for application as supercapacitor electrodes. By coating the nanostructured active material of Co(OH)2 onto one electrode, the asymmetric supercapacitor has exhibited a high specific capacitance of 310 F g−1, energy density of 172 Wh kg−1 and maximum power density of 198 kW kg−1 in ionic liquid electrolyte EMI-TFSI.  相似文献   

7.
Supercapacitors have aroused considerable attention due to their high power capability, which enables charge storage/output in minutes or even seconds. However, to achieve a high energy density in a supercapacitor has been a long‐standing challenge. Here, graphite is reported as a high‐energy alternative to the frequently used activated carbon (AC) cathode for supercapacitor application due to its unique Faradaic pseudocapacitive anion intercalation behavior. The graphite cathode manifests both higher gravimetric and volumetric energy density (498 Wh kg?1 and 431.2 Wh l?1) than an AC cathode (234 Wh kg?1 and 83.5 Wh l?1) with peak power densities of 43.6 kW kg?1 and 37.75 kW l?1. A new type of Li‐ion pseudocapacitor (LIpC) is thus proposed and demonstrated with graphite as cathode and prelithiated graphite or Li4Ti5O12 (LTO) as anode. The resultant graphite–graphite LIpCs deliver high energy densities of 167–233 Wh kg?1 at power densities of 0.22–21.0 kW kg?1 (based on active mass in both electrodes), much higher than 20–146 Wh kg?1 of AC‐derived Li‐ion capacitors and 23–67 Wh kg?1 of state‐of‐the‐art metal oxide pseudocapacitors. Excellent rate capability and cycling stability are further demonstrated for LTO‐graphite LIpCs.  相似文献   

8.
The large‐scale application of supercapacitors (SCs) for portable electronics is restricted by low energy density and cycling stability. To alleviate the limitations, a unique interface engineering strategy is suggested through atomic layer deposition (ALD) and nitrogen plasma. First, commercial carbon cloth (CC) is treated with nitrogen plasma and later inorganic NiCo2O4 (NCO)/NiO core–shell nanowire arrays are deposited on nitrogen plasma–treated CC (NCC) to fabricate the ultrahigh stable SC. An ultrathin layer of NiO deposited on the NCO nanowire arrays via conformal ALD plays a vital role in stabilizing the NCO nanowires for thousands of electrochemical cycles. The optimized NCC/NCO/NiO core–shell electrode exhibits a high specific capacitance of 2439 F g?1 with a remarkable cycling stability (94.2% over 20 000 cycles). Benefiting from these integrated merits, the foldable solid‐state SCs are fabricated with excellent NCC/NCO/NiO core–shell nanowire array electrodes. The fabricated SC device delivers a high energy density of 72.32 Wh kg?1 at a specific capacitance of 578 F g?1, with ultrasmall capacitance decline rate of 0.0003% per cycle over 10 000 charge–discharge cycles. Overall, this strategy offers a new avenue for developing a new‐generation high‐energy, ultrahigh stable supercapacitor for real‐life applications.  相似文献   

9.
The high‐performance electrode materials with tuned surface and interface structure and functionalities are highly demanded for advanced supercapacitors. A novel strategy is presented to conFigure high‐stacking‐density, superior‐roughness nickel manganese layered double hydroxide (LDH) bridged by vertically aligned graphene (VG) with nickel foam (NF) as the conductive collector, yielding the LDH‐NF@VG hybrids for asymmetric supercapacitors. The VG nanosheets provide numerous electron transfer channels for quick redox reactions, and well‐developed open structure for fast mass transport. Moreover, the high‐stacking‐density LDH grown and assembled on VG nanosheets result in a superior hydrophilicity derived from the tuned nano/microstructures, especially microroughness. Such a high stacking density with abundant active sites and superior wettability can be easily accessed by aqueous electrolytes. Benefitting from the above features, the LDH‐NF@VG can deliver a high capacitance of 2920 F g?1 at a current density of 2 A g?1, and the asymmetric supercapacitor with the LDH‐NF@VG as positive electrode and activated carbon as negative electrode can deliver a high energy density of 56.8 Wh kg?1 at a power density of 260 W kg?1, with a high specific capacitance retention rate of 87% even after 10 000 cycles.  相似文献   

10.
The development of manganese dioxide as the cathode for aqueous Zn‐ion battery (ZIB) is limited by the rapid capacity fading and material dissolution. Here, a highly reversible aqueous ZIB using graphene scroll‐coated α‐MnO2 as the cathode is proposed. The graphene scroll is uniformly coated on the MnO2 nanowire with an average width of 5 nm, which increases the electrical conductivity of the MnO2 nanowire and relieves the dissolution of the cathode material during cycling. An energy density of 406.6 Wh kg?1 (382.2 mA h g?1) at 0.3 A g?1 can be reached, which is the highest specific energy value among all the cathode materials for aqueous Zn‐ion battery so far, and good long‐term cycling stability with 94% capacity retention after 3000 cycles at 3 A g?1 are achieved. Meanwhile, a two‐step intercalation mechanism that Zn ions first insert into the layers and then the tunnels of MnO2 framework is proved by in situ X‐ray diffraction, galvanostatic intermittent titration technique, and X‐ray photoelectron spectroscopy characterizations. The graphene scroll‐coated metallic oxide strategy can also bring intensive interests for other energy storage systems.  相似文献   

11.
Skutterudite CoP3 holds a unique structural formation that exhibits much better electronic properties for obtaining high energy density supercapacitors. Herein, novel skutterudite Ni–CoP3 nanosheets are constructed by etching and coprecipitating at room temperature and subsequent low‐temperature phosphorization reaction. Benefiting from the enhanced electrical conductivity and more electroactive sites brought about by adjusting the electronic structure with Ni incorporating the Ni–CoP3 electrode with a battery‐type demonstrates an ultrahigh specific capacity of 0.7 mA h cm?2 and exceptional cycling stability. The asymmetric supercapacitor (ASC) device fabricated by employing Ni–CoP3 and activated carbon (AC) as positive and negative electrodes, resepectively, exhibits a remarkable high energy density of 89.6 Wh kg?1 at 796 W kg?1 and excellent stability of 93% after 10 000 cycles, due to the skutterudite structure. The skutterudite Ni–CoP3 shows a great potential to be an excellent next‐generation electrode candidate for supercapacitors and other energy storage devices.  相似文献   

12.
Graphene electrode–based supercapacitors are in high demand due to their superior electrochemical characteristics. A major bottleneck of using the supercapacitors for commercial applications lies in their inferior electrode cycle life. Herein, a simple and facile method to fabricate highly efficient supercapacitor electrodes using pristine graphene sheets vertically stacked and electrically connected to the carbon fibers which can result in vertically aligned graphene–carbon fiber nanostructure is developed. The vertically aligned graphene–carbon fiber electrode prepared by electrophoretic deposition possesses a mesoporous 3D architecture which enabled faster and efficient electrolyte‐ion diffusion with a gravimetric capacitance of 333.3 F g?1 and an areal capacitance of 166 mF cm?2. The electrodes displayed superlong electrochemical cycling stability of more than 100 000 cycles with 100% capacitance retention hence promising for long‐lasting supercapacitors. Apart from the electrochemical double layer charge storage, the oxygen‐containing surface moieties and α‐Ni(OH)2 present on the graphene sheets enhance the charge storage by faradaic reactions. This enables the assembled device to provide an excellent gravimetric energy density of 76 W h kg?1 with a 100% capacitance retention even after 1000 bending cycles. This study opens the door for developing high‐performing flexible graphene electrodes for wearable energy storage applications.  相似文献   

13.
A novel hybrid Li‐ion capacitor (LIC) with high energy and power densities is constructed by combining an electrochemical double layer capacitor type cathode (graphene hydrogels) with a Li‐ion battery type anode (TiO2 nanobelt arrays). The high power source is provided by the graphene hydrogel cathode, which has a 3D porous network structure and high electrical conductivity, and the counter anode is made of free‐standing TiO2 nanobelt arrays (NBA) grown directly on Ti foil without any ancillary materials. Such a subtle designed hybrid Li‐ion capacitor allows rapid electron and ion transport in the non‐aqueous electrolyte. Within a voltage range of 0.0?3.8 V, a high energy of 82 Wh kg?1 is achieved at a power density of 570 W kg?1. Even at an 8.4 s charge/discharge rate, an energy density as high as 21 Wh kg?1 can be retained. These results demonstrate that the TiO2 NBA//graphene hydrogel LIC exhibits higher energy density than supercapacitors and better power density than Li‐ion batteries, which makes it a promising electrochemical power source.  相似文献   

14.
In this article, three-dimensional (3D) heterostructured of MnO2/graphene/carbon nanotube (CNT) composites were synthesized by electrochemical deposition (ELD)-electrophoretic deposition (EPD) and subsequently chemical vapour deposition (CVD) methods. MnO2/graphene/CNT composites were directly used as binder-free electrodes to investigate the electrochemical performance. To design a novel electrode material with high specific area and excellent electrochemical property, the Ni foam was chosen as the substrate, which could provide a 3D skeleton extremely enhancing the specific surface area and limiting the huge volume change of the active materials. The experimental results indicated that the specific capacitance of MnO2/graphene/CNT composite was up to 377.1 F g?1 at the scan speed of 200 mV s?1 with a measured energy density of 75.4 Wh kg?1. The 3D hybrid structures also exhibited superior long cycling life with close to 90% specific capacitance retained after 500 cycles.  相似文献   

15.
A novel high‐performance flexible gel polymer electrolyte (FGPE) for supercapacitors is prepared by a freeze‐drying method. In the presence of 1‐butyl‐3‐methylimidazolium chloride (BMIMCl) ionic liquid, Li2SO4 can easily be added into poly(vinyl alcohol) (PVA) aqueous solution over a large concentration range. The resultant FGPE demonstrates considerably high ionic conductivity (37 mS cm−1) and a high fracture strain at 100% elongation at the optimal weight ratio of PVA:BMIMCl:Li2SO4 = 1:3:2.2. The supercapacitor fabricated with the resultant FGPE and activated carbon electrodes shows an electrode‐specific capacitance of 136 F g−1 with a stable operating voltage of 1.5 V, a maximum energy density of 10.6 Wh kg−1, and a power density of 3400 W kg−1. Double supercapacitors in series can efficiently drive a light emitting diode (LED) bulb for over 5 min and the retention of the specific capacitance reaches 90% even after 3000 charge–discharge cycles. The ionic conductivity and charge–discharge behaviors of the resultant FGPE are not affected by bending up to 180°. The flexible supercapacitor device shows only a small capacitance loss of 18% after 1000 cycles of 135° bending.  相似文献   

16.
Although there has been tremendous progress in exploring new configurations of zinc‐ion hybrid supercapacitors (Zn‐HSCs) recently, the much lower energy density, especially the much lower areal energy density compared with that of the rechargeable battery, is still the bottleneck, which is impeding their wide applications in wearable devices. Herein, the pre‐intercalation of Zn2+ which gives rise to a highly stable tunnel structure of ZnxMnO2 in nanowire form that are grown on flexible carbon cloth with a disruptively large mass loading of 12 mg cm?2 is reported. More interestingly, the ZnxMnO2 nanowires of tunnel structure enable an ultrahigh areal energy density and power density, when they are employed as the cathode in Zn‐HSCs. The achieved areal capacitance of up to 1745.8 mF cm?2 at 2 mA cm?2, and the remarkable areal energy density of 969.9 µWh cm?2 are comparable favorably with those of Zn‐ion batteries. When integrated into a quasi‐solid‐state device, they also endow outstanding mechanical flexibility. The truly battery‐level Zn‐HSCs are timely in filling up of the battery‐supercapacitor gap, and promise applications in the new generation flexible and wearable devices.  相似文献   

17.
Transition metal oxides (TMOs), with their very large pseudocapacitance effect, hold promise for next generation high‐energy‐density electrochemical supercapacitors (ECs). However, the typical high resistivity of TMOs restricts the reported ECs to work at a low charge–discharge (C–D) rate of 0.1–1 V s−1. Here, a novel vanadium oxides core/shell nanostructure‐based electrode to overcome the resistivity challenge of TMOs for rapid pseudocapacitive EC design is reported. Quasi‐metallic V2O3 nanocores are dispersed on graphene sheets for electrical connection of the whole structure, while a naturally formed amorphous VO2 and V2O5 (called as VOx here) thin shell around V2O3 nanocore acts as the active pseudocapacitive material. With such a graphene‐bridged V2O3/VOx core–shell composite as electrode material, ECs with a C–D rate as high as 50 V s−1 is demonstrated. This high rate was attributed to the largely enhanced conductivity of this unique structure and a possibly facile redox mechanism. Such an EC can provide 1000 kW kg−1 power density at an energy density of 10 Wh kg−1. At the critical 45° phase angle, these ECs have a measured frequency of 114 Hz. All these indicate the graphene‐bridged V2O3/VOx core–shell structure is promising for fast EC development.  相似文献   

18.
While electrochemical supercapacitors often show high power density and long operation lifetimes, they are plagued by limited energy density. Pseudocapacitive materials, in contrast, operate by fast surface redox reactions and are shown to enhance energy storage of supercapacitors. Furthermore, several reported systems exhibit high capacitance but restricted electrochemical voltage windows, usually no more than 1 V in aqueous electrolytes. Here, it is demonstrated that vertically aligned carbon nanotubes (VACNTs) with uniformly coated, pseudocapacitive titanium disulfide (TiS2) composite electrodes can extend the stable working range to over 3 V to achieve a high capacitance of 195 F g?1 in an Li‐rich electrolyte. A symmetric cell demonstrates an energy density of 60.9 Wh kg?1—the highest among symmetric pseudocapacitors using metal oxides, conducting polymers, 2D transition metal carbides (MXene), and other transition metal dichalcogenides. Nanostructures prepared by an atomic layer deposition/sulfurization process facilitate ion transportation and surface reactions to result in a high power density of 1250 W kg?1 with stable operation over 10 000 cycles. A flexible solid‐state supercapacitor prepared by transferring the TiS2–VACNT composite film onto Kapton tape is demonstrated to power a 2.2 V light emitting diode (LED) for 1 min.  相似文献   

19.
Supercapacitors have received increasing interest as energy storage devices due to their rapid charge–discharge rates, high power densities, and high durability. In this work, novel conjugated microporous polymer (CMP) networks are presented for supercapacitor energy storage, namely 3D polyaminoanthraquinone (PAQ) networks synthesized via Buchwald–Hartwig coupling between 2,6‐diaminoanthraquinone and aryl bromides. PAQs exhibit surface areas up to 600 m2 g?1, good dispersibility in polar solvents, and can be processed to flexible electrodes. The PAQs exhibit a three‐electrode specific capacitance of 576 F g?1 in 0.5 m H2SO4 at a current of 1 A g?1 retaining 80–85% capacitances and nearly 100% Coulombic efficiencies (95–98%) upon 6000 cycles at a current density of 2 A g?1. Asymmetric two‐electrode supercapacitors assembled by PAQs show a capacitance of 168 F g?1 of total electrode materials, an energy density of 60 Wh kg?1 at a power density of 1300 W kg?1, and a wide working potential window (0–1.6 V). The asymmetric supercapacitors show Coulombic efficiencies up to 97% and can retain 95.5% of initial capacitance undergo 2000 cycles. This work thus presents novel promising CMP networks for charge energy storage.  相似文献   

20.
Cost‐effective synthesis of carbon nanospheres with a desirable mesoporous network for diversified energy storage applications remains a challenge. Herein, a direct templating strategy is developed to fabricate monodispersed N‐doped mesoporous carbon nanospheres (NMCSs) with an average particle size of 100 nm, a pore diameter of 4 nm, and a specific area of 1093 m2 g?1. Hexadecyl trimethyl ammonium bromide and tetraethyl orthosilicate not only play key roles in the evolution of mesopores but also guide the assembly of phenolic resins to generate carbon nanospheres. Benefiting from the high surface area and optimum mesopore structure, NMCSs deliver a large specific capacitance up to 433 F g?1 in 1 m H2SO4. The NMCS electrodes–based symmetric sandwich supercapacitor has an output voltage of 1.4 V in polyvinyl alcohol/H2SO4 gel electrolyte and delivers an energy density of 10.9 Wh kg?1 at a power density of 14014.5 W kg?1. Notably, NMCSs can be directly applied through the mask‐assisted casting technique by a doctor blade to fabricate micro‐supercapacitors. The micro‐supercapacitors exhibit excellent mechanical flexibility, long‐term stability, and reliable power output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号