首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Preparation and characterization of poly(N‐isopropylacrylamide) (PNIPAM) polymer brushes on the surfaces of reduced graphene oxide (RGO) sheets based on click chemistry and reversible addition‐fragmentation chain transfer (RAFT) polymerization was reported. RGO sheets prepared by thermal reduction were modified by diazonium salt of propargyl p‐aminobenzoate, and alkyne‐functionalized RGO sheets were obtained. RAFT chain transfer agent (CTA) was grafted to the surfaces of RGO sheets by click reaction. PNIPAM on RGO sheets was prepared by RAFT polymerization. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and transmission electron microscopy (TEM) results all demonstrated that RAFT CTA and PNIPAM were successfully produced on the surfaces of RGO sheets. Nanosized PNIPAM domains on RGO sheets were observed on TEM. Micro‐DSC result indicated that in aqueous solution PNIPAM on RGO sheets presented a lower critical solution temperature at 33.2 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A new approach on usage of S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate (DDAT)‐covalently functionalized graphene oxide (GO) as reversible addition fragmentation chain transfer (RAFT) agent for growing of poly(N‐vinylcarbazole) (PVK) directly from the surface of GO was described. The PVK polymer covalently grafted onto GO has Mn of 8.05 × 103, and a polydispersity of 1.43. The resulting material PVK‐GO shows a good solubility in organic solvents when compared to GO, and a significant energy bandgap of ~2.49 eV. Bistable electrical switching and nonvolatile rewritable memory effect, with a turn‐on voltage of about ?1.7 V and an ON/OFF state current ratio in excess of 103, are demonstrated in the Al/PVK‐GO/ITO structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA) homopolymers with low polydispersities were synthesized by reversible addition fragmentation chain transfer (RAFT) radical polymerization. The performances of two chain transfer agents, 2‐cyanoprop‐2‐yl dithiobenzoate and 4‐cyanopentanic acid dithiobenzoate (CPADB), were compared. It was found that the polymerization of 2‐(diethylamino) ethyl methylacrylate was under good control in the presence of CPADB with 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as initiator in 1,4‐dioxane at 70 °C. The kinetic behaviors were investigated under different CPADB/ACPA molar ratios. A long polymerization inhibition period was observed at high [CPADB]/[ACPA] ratio. The influences of [CPADB]/[ACPA] ratio, monomer/[CPADB] ratio, and temperature were studied with respect to monomer conversion, molecular weight control, and polydispersity index (PDI). The PDI decreased from 1.21 to 1.12, as the CPADB/ACPA molar ratio changed from 2 to 10. The molecular weight of PDEAEMA could be controlled by monomer/CPADB molar ratio. The control over MW and PDI was improved as the temperature increased from 60 to 70 °C; however, an additional increase to 80 °C led to a loss of control. Using PDEAEMA macroRAFT agent, pH/thermo double‐responsive block copolymers of PDEAEMA and poly(N‐isopropylacrylamide) (PDEAEMA‐b‐PNIPAM) with narrow polydispersity (PDI, 1.24) were synthesized. The lower critical solution temperature of PDEAEMA‐b‐PNIPAM block copolymer depended on the environmental pH. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3294–3305, 2008  相似文献   

5.
Among the living radical polymerization techniques, reversible addition–fragmentation chain transfer (RAFT) and macromolecular design via the interchange of xanthates (MADIX) polymerizations appear to be the most versatile processes in terms of the reaction conditions, the variety of monomers for which polymerization can be controlled, tolerance to functionalities, and the range of polymeric architectures that can be produced. This review highlights the progress made in RAFT/MADIX polymerization since the first report in 1998. It addresses, in turn, the mechanism and kinetics of the process, examines the various components of the system, including the synthesis paths of the thiocarbonyl‐thio compounds used as chain‐transfer agents, and the conditions of polymerization, and gives an account of the wide range of monomers that have been successfully polymerized to date, as well as the various polymeric architectures that have been produced. In the last section, this review describes the future challenges that the process will face and shows its opening to a wider scientific community as a synthetic tool for the production of functional macromolecules and materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:5347–5393, 2005  相似文献   

6.
Aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS) was used to prepare a POSS‐containing reversible addition‐fragmentation transfer (RAFT) agent. The POSS‐containing RAFT agent was used in the RAFT polymerization of N‐isopropylacrylamide (NIPAM) to produce tadpole‐shaped organic/inorganic hybrid Poly(N‐isopropylacrylamide) (PNIPAM). The results show that the POSS‐containing RAFT agent was an effective chain transfer agent in the RAFT polymerization of NIPAM, and the polymerization kinetics were found to be pseudo‐first‐order behavior. The thermal properties of the organic/inorganic hybrid PNIPAM were also characterized by differential scanning calorimetry. The glass transition temperature (Tg) of the tadpole‐shaped inorganic/organic hybrid PNIPAM was enhanced by POSS molecule. The self‐assembly behavior of the tadpole‐shaped inorganic/organic hybrid PNIPAM was investigated by atomic force microscopy and dynamic light scattering. The results show the core‐shell nanostructured micelles with a uniform diameter. The diameter of the micelle increases with the molecular weight of the hybrid PNIPAM. Surprisingly, the micelle of the tadpole‐shaped inorganic/organic hybrid PNIPAM with low molecular weight has a much bigger and more compact core than that with high molecular weight. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7049–7061, 2008  相似文献   

7.
A novel amphiphilic A3B miktoarm star copolymer poly(N‐isopropylacrylamide)3‐poly(N‐vinylcarbazole) ((PNIPAAM)3(PVK)) was successfully synthesized by a combination of single‐electron transfer living radical polymerization (SET‐LRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization. First, the well‐defined three‐armed poly(N‐isopropylacrylamide) (PNIPAAM)3 was prepared via SET‐LRP of N‐isopropylacrylamide in acetone at 25 °C using a tetrafunctional bromoxanthate iniferter (Xanthate‐Br3) as the initiator and Cu(0)/PMDETA as a catalyst system. Secondly, the target amphiphilic A3B miktoarm star copolymer ((PNIPAAM)3(PVK)) was prepared via RAFT polymerization of N‐vinylcarbazole (NVC) employing (PNIPAAM)3 as the macro‐RAFT agent. The architecture of the amphiphilic A3B miktoarm star copolymers were characterized by GPC, 1H‐NMR spectra. Furthermore, the fluorescence intensity of micelle increased with the temperature and had a good temperature reversibility, which was investigated by dynamic light scattering (DLS), fluorescent and UV‐vis spectra. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4268–4278, 2010  相似文献   

8.
Two hydrophobic vinyl saccharide monomers based on D ‐glucose and D ‐fructose were polymerized by employing the reversible addition‐fragmentation transfer (RAFT) miniemulsion polymerization technique to prepare well‐designed glycopolymers. Three dithiobenzoate‐RAFT agents [S?C(Ph)S? R], 1‐phenylethyl dithiobenzoate (PED), 2‐phenylprop‐2‐yl dithiobenzoate (PPD), and 2‐cyanoprop‐2‐yl dithiobenzoate (CPD), were used to control the growth of polymer chains. The best results were obtained in the presence of the PPD‐RAFT agent and the formed polymers have polydispersity index's (PDI) lower than 1.15. Under adequate miniemulsion polymerization conditions, a glycopolymer with PDI of 1.1 and molecular weight of 5 × 104 g/mol has been successfully synthesized in a short reaction time of 100 min. Furthermore, some block copolymers containing saccharide segment with butyl or methyl methacrylate were prepared. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Fluorescence end‐labeled polystyrene (PS) with heteroaromatic carbazole or indole group were prepared conveniently via reversible addition‐fragmentation chain transfer (RAFT) polymerization using dithiocarbamates, ethyl 2‐(9H‐carbazole‐9‐carbonothioylthio)propanoate (ECCP) and benzyl 2‐phenyl‐1H‐indole‐1‐carbodithioate (BPIC) as RAFT agents. The end functionality of obtained PS with different molecular weights was high. The steady‐state and the time‐resolved fluorescence techniques had been used to study the fluorescence behaviors of obtained end‐labeled PS. The fluorescence of dithiocarbamates resulting PS in solid powder cannot be monitored; however, they exhibited structured absorptions and emissions in solvent DMF and the fluorescence lifetimes of PS had no obvious change with molecular weights increasing. These observations suggested that the polymer chains were possibly stretched adequately in DMF, that is, the fluorescence end group was exposed into solvent molecules and little quenching of excited state occurred upon incorporation into polymer chain. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6198–6205, 2008  相似文献   

10.
The reversible addition–fragmentation chain transfer (RAFT) polymerizations of 2‐naphthyl acrylate (2NA) initiated by 2,2′‐azobisisobutyronitrile were investigated with 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN) as a RAFT agent at various temperatures in a benzene solution. The results of the polymerizations showed that 2NA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion. The polydispersities of the polymer were relatively low up to high conversions in all cases. The chain‐extension reactions of poly(2‐naphthyl acrylate) (P2NA) with methyl methacrylate and styrene successfully yielded poly(2‐naphthyl acrylate)‐b‐poly(methyl methacrylate) and poly(2‐naphthyl acrylate)‐b‐polystyrene block polymers, respectively, with narrow polydispersities. The P2NA obtained by RAFT polymerization had a strong ultraviolet absorption at 270 nm, and the molecular weights had no apparent effect on the ultraviolet absorption intensities; however, the fluorescence intensity of P2NA increased as the molecular weight increased and was higher than that of 2NA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2632–2642, 2005  相似文献   

11.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

12.
Four families of hyperbranched amphiphilic block copolymers of styrene (Sty, less polar monomer) and 2‐vinylpyridine (2VPy, one of the two more polar monomers) or 4‐vinylpyridine (4VPy, the other polar monomer) were prepared via self‐condensing vinyl reversible addition‐fragmentation chain transfer polymerization (SCVP‐RAFT). Two families contained 4VPy as the more polar monomer, one of which possessing a Sty‐b‐4VPy architecture, and the other possessing the reverse block architecture. The other two families bore 2VPy as the more polar monomer and had either a 2VPy‐b‐Sty or a Sty‐b‐2VPy architecture. Characterization of the hyperbranched block copolymers in terms of their molecular weights and compositions indicated better control when the VPy monomers were polymerized first. Control over the molecular weights of the hyperbranched copolymers was also confirmed with the aminolysis of the dithioester moiety at the branching points to produce linear polymers with number‐average molecular weights slightly greater than the theoretically expected ones, due to recombination of the resulting thiol‐terminated linear polymers. The amphiphilicity of the hyperbranched copolymers led to their self‐assembly in selective solvents, which was probed using atomic force microscopy and dynamic light scattering, which indicated the formation of large spherical micelles of uniform diameter. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1310–1319  相似文献   

13.
We demonstrate the ability of the reversible addition‐fragmentation chain transfer (RAFT) process to produce well‐defined block co‐oligomers for which each block has a narrow molecular weight distribution and degrees of polymerization ranging from 2 to 33. We exploit RAFT versatility to control the structure of the co‐oligomers and produce amphiphilic block co‐oligomers of styrene, acrylic acid and ethylene glycol. A detailed study shows that the amphiphilic diblock co‐oligomers self‐assemble in solution and form micelles or particles, depending on the hydrophobicity of the diblock. These oligomers present an excellent alternative to traditional amphiphilic molecules, by combining the properties of polymers with those of single molecule surfactants. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Crosslinked chiral nanoparticles were successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) miniemulsion polymerization of 6‐Op‐vinylbenzyl‐1,2:3,4‐di‐O‐isopropylidene‐D ‐galactopyranose (VBPG) using linear poly(VBPG) as the macro‐RAFT agent. The polymerization of VBPG in the absence of crosslinker was first studied and the kinetic results showed that the molecular weights of the obtained poly(VBPG) increased linearly with the monomer conversion and was in good consistency with the corresponding theoretical ones while there remained a relative narrow polydispersity. The effect of the amount of crosslinker, divinylbenzene, on the nanoparticle size and chiral separation properties of the obtained nanoparticles were investigated in detail using four racemates ±‐3‐Amino‐1,2‐propanediol, D ,L ‐arabinose, D ,L ‐tartaric acid, and D ,L ‐mandelic acid. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1324–1331, 2010  相似文献   

15.
The preparation of well‐defined polyisoprene‐grafted silica nanoparticles (PIP‐g‐SiO2 NPs) was investigated. Surface initiated reversible addition fragmentation chain transfer (SI‐RAFT) polymerization was used to polymerize isoprene from the surface of 15 nm silica NPs. A high temperature stable trithiocarbonate RAFT agent was anchored onto the surface of particles with controllable graft densities. The polymerization of isoprene mediated by silica anchored RAFT with different densities were investigated and compared to the polymerization mediated by free RAFT agents. The effects of different temperatures, initiators, and monomer feed ratios on the kinetics of the SI‐RAFT polymerization were also investigated. Using this technique, block copolymers of polyisoprene and polystyrene on the surface of silica particles were also prepared. The well‐defined synthesized PIP‐g‐SiO2 NPs were then mixed with a polyisoprene matrix which showed a good level of dispersion throughout the matrix. These tunable grafted particles have potential applications in the field of rubber nanocomposites. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1493–1501  相似文献   

16.
Summary: The trithiocarbonate end groups of polymers prepared by RAFT polymerization are converted into colorless and stable thioethers in a one‐pot process that combines aminolysis of the trithiocarbonate functions and Michael addition of the resulting thiols to α, β‐unsaturated carbonyl derivatives. This post polymerization procedure, which is carried out under mild conditions to near quantitative conversion, is described in the case of a telechelic poly(N‐isopropylacrylamide) sample bearing isobutylsulfanylthiocarbonylsulfanyl end groups. The chemical composition, purity, and molar masses of the modified polymers are assessed by GPC, 1H NMR spectroscopy and UV‐vis spectroscopy, which together demonstrate the efficiency of the method and confirm that the molecular weight and polydispersity of the precursor RAFT polymer are not affected by the treatment.

The facile, one pot synthesis combines the reactions of trithiocarbonate aminolysis and Michael addition of a thiol to an α, β‐unsaturated ester to transform the labile, colored thiocarbonylthio moiety into a stable, colorless thioether.  相似文献   


17.
Poly(N‐isopropylacrylamide) (PNIPAAm) homopolymers synthesized by reversible addition–fragmentation chain transfer polymerization were used as macro‐chain‐transfer agents to synthesize smart amphiphilic block copolymers with a switchable hydrophilic–hydrophobic block of PNIPAAm and a hydrophilic block of poly(N‐dimethylacrylamide). All polymers were characterized by gel permeation chromatography, 1H NMR, and differential scanning calorimetry. The reversible micelles formed by the block copolymers of various compositions in aqueous solutions were characterized by 1H NMR, dynamic light scattering, and tensiometry. Micelles were observed in the aqueous solutions when the temperature was increased to 40 °C because of the collapse of the PNIPAAm structure, which led to a PNIPAAm hydrophobic block. The drug loading capacity was illustrated with the use of the solvatochromic Reichardt's dye and measured by ultraviolet–visible. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3643–3654, 2005  相似文献   

18.
The kinetics of the RAFT polymerization of p‐acetoxystyrene using a trithiocarbonate chain transfer agent, S‐1‐dodecyl‐S′‐(α,α′‐dimethyl‐α″‐acetic acid)trithiocarbonate, DDMAT, was investigated. Parameters including temperature, percentage initiator, concentration, monomer‐to‐chain transfer agent ratio, and solvent were varied and their impact on the rate of polymerization and quality of the final polymer examined. Linear kinetic plots, linear increase of Mn with monomer conversion, and low final molecular weight dispersities were used as criteria for the selection of optimized polymerization conditions, which included a temperature of 70 or 80 °C with 10 mol % AIBN initiator in bulk for low conversions or in 1,4‐dioxane at a monomer‐to‐solvent volume ratio of 1:1 for higher conversions This study opens the way for the use of DDMAT as a chain transfer agent for RAFT polymerization to incorporate p‐acetoxystyrene together with other functional monomers into well‐defined copolymers, block copolymers, and nanostructures. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2517–2524, 2010  相似文献   

19.
Aqueous RAFT polymerization of N‐isopropylacrylamide (NIPAM) mediated with hydrophilic macro‐RAFT agent is generally used to prepare poly(N‐isopropylacrylamide) (PNIPAM)‐based block copolymer. Because of the phase transition temperature of the block copolymer in water being dependent on the chain length of the PNIPAM block, the aqueous RAFT polymerization is much more complex than expected. Herein, the aqueous RAFT polymerization of NIPAM in the presence of the hydrophilic macro‐RAFT agent of poly(dimethylacrylamide) trithiocarbonate is studied and compared with the homogeneous solution RAFT polymerization. This aqueous RAFT polymerization leads to the well‐defined poly(dimethylacrylamide)‐b‐poly(N‐isopropylacrylamide)‐b‐poly(dimethylacrylamide) (PDMA‐b‐PNIPAM‐b‐PDMA) triblock copolymer. It is found, when the triblock copolymer contains a short PNIPAM block, the aqueous RAFT polymerization undergoes just like the homogeneous one; whereas when the triblock copolymer contains a long PNIPAM block, both the initial homogeneous polymerization and the subsequent dispersion polymerization are involved and the two‐stage ln([M]o/[M])‐time plots are indicated. The reason that the PNIPAM chain length greatly affects the aqueous RAFT polymerization is discussed. The present study is anticipated to be helpful to understand the chain extension of thermoresponsive block copolymer during aqueous RAFT polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
Copolymerizations of n‐butyl methacrylate (BMA) and fluoro‐methacrylates (including 2,2,3,4,4,4‐hexafluorobutyl methacrylate, HFBMA and 2,2,2‐trifluoroethyl methacrylate, TFEMA) were carried out via reversible addition‐fragmentation chain transfer miniemulsion polymerization, using cumyl dithiobenzoate as a chain transfer agent. The experimental results show that the copolymerizations exhibit “living” fashion, with controlled molecular weights and narrow polydispersities. The reactivity ratios of BMA and fluoromethacrylate in this kind of polymerization system were investigated by size exclusion chromatography and nuclear magnetic resonance, from which the Q‐ and e‐values of HFBMA and TFEMA were calculated. Compared with its corresponding non‐fluoric methacrylate, fluorinated methacrylate exhibits higher resonance stability of the radical adducts. The Q‐value of fluorinated methacrylate is higher (QBMA = 0.82 to QHFBMA = 1.70 and QEMA = 0.76 to QTFEMA = 1.01), and e‐value is much larger (eBMA = 0.28 to eHFBMA = 1.24 to and eEMA = 0.17 to eTFEMA = 1.29) for its rather unique high electron‐withdrawing inductive effect of the fluoroalkyl ester group. The thermal property and the wetting property of copolymers were also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5067–5075, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号