首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, it is shown that the cytotoxic response of cells as well as the uptake kinetics of nanoparticles (NPs) is cell type dependent. We use silica NPs with a diameter of 310 nm labeled with perylene dye and 304 nm unlabeled particles to evaluate cell type‐dependent uptake and cytotoxicity on human vascular endothelial cells (HUVEC) and cancer cells derived from the cervix carcinoma (HeLa). Besides their size, the particles are characterized concerning homogeneity of the labeling and their zeta potential. The cellular uptake of the labeled NPs is quantified by imaging the cells via confocal microscopy in a time‐dependent manner, with subsequent image analysis via a custom‐made and freely available digital method, Particle_in_Cell‐3D. We find that within the first 4 h of interaction, the uptake of silica NPs into the cytoplasm is up to 10 times more efficient in HUVEC than in HeLa cells. Interestingly, after 10 or 24 h of interaction, the number of intracellular particles for HeLa cells by far surpasses the one for HUVEC. Inhibitor studies show that these endothelial cells internalize 310 nm SiO2 NPs via the clathrin‐dependent pathway. Remarkably, the differences in the amount of taken up NPs are not directly reflected by the metabolic activity and membrane integrity of the individual cell types. Interaction with NPs leads to a concentration‐dependent decrease in mitochondrial activity and an increase in membrane leakage for HUVEC, whereas HeLa cells show only a reduced mitochondrial activity and no membrane leakage. In addition, silica NPs lead to HUVEC cell death while HeLa cells survive. These findings indicate that HUVEC are more sensitive than HeLa cells upon silica NP exposure.  相似文献   

3.
The role of surface chemistry on the toxicity of Ag nanoparticles is investigated using Saccharomyces cerevisiae yeast as a platform for evaluation. Combining the shape‐controlled synthesis of Ag nanoparticles with a comprehensive characterization of their physicochemical properties, an understanding is formed of the correlation between the physicochemical parameters of nanoparticles and the inhibition growth of yeast cells upon the introduction of nanoparticles into the cell culture system. Capping agents, surface facets, and sample stability—the three experimental parameters that are inherent from the wet‐chemical synthesis of Ag nanoparticles—have a strong impact on toxicity evaluation. Hence, it is important to characterize surface properties of Ag nanoparticles in the nature of biological media and to understand the role that surface chemistry may interplay to correlate the physicochemical properties of nanoparticles with their biological response upon exposure. This work demonstrates the great importance of surface chemistry in designing experiments for reliable toxicity evaluation and in mitigating the toxicity of Ag nanoparticles for their safe use in future commercialization.  相似文献   

4.
5.
The extensive use of gold nanoparticles (AuNPs) in nanomedicine, especially for intracellular imaging, photothermal therapy, and drug delivery, has necessitated the study of how functionalized AuNPs engage with living biological interfaces like the mammalian cell. Nanoparticle size, shape, surface charge, and surface functionality can affect the accumulation of functionalized AuNPs in cells. Confocal microscopy, flow cytometry, and inductively coupled plasma mass spectrometry demonstrate that CaSki cells, a human cervical cancer cell line, internalize AuNPs functionalized with hairpin, single stranded, and double stranded DNA differently. Surface charge and DNA conformation are shown to have no effect on the cell‐nanoparticle interaction. CaSki cells accumulate small DNA‐AuNPs in greater quantities than large DNA‐AuNPs, demonstrating that size is the major contributor to cellular uptake properties. These data suggest that DNA‐AuNPs can be easily tailored through modulation of size to design functional AuNPs with optimal cellular uptake properties and enhanced performance in nanomedicine applications.  相似文献   

6.
Metal oxide nanomaterials are widely used in practical applications and represent a class of nanomaterials with the highest global annual production. Many of those, such as TiO2 and ZnO, are generally considered non‐toxic due to the lack of toxicity of the bulk material. However, these materials typically exhibit toxicity to bacteria and fungi, and there have been emerging concerns about their ecotoxicity effects. The understanding of the toxicity mechanisms is incomplete, with different studies often reporting contradictory results. The relationship between the material properties and toxicity appears to be complex and diifficult to understand, which is partly due to incomplete characterization of the nanomaterial, and possibly due to experimental artefacts in the characterization of the nanomaterial and/or its interactions with living organisms. This review discusses the comprehensive characterization of metal oxide nanomaterials and the mechanisms of their toxicity.  相似文献   

7.
Medical applications of nanoparticles (NPs) require understanding of their interactions with living systems in order to control their physiological response, such as cellular uptake and cytotoxicity. When NPs are exposed to biological fluids, the adsorption of extracellular proteins on the surface of NPs, creating the so‐called protein corona, can critically affect their interactions with cells. Here, the effect of surface coating of silver nanoparticles (AgNPs) on the adsorption of serum proteins (SPs) and its consequence on cellular uptake and cytotoxicity in mouse embryonic fibroblasts are shown. In particular, citrate‐capped AgNPs are internalized by cells and show a time‐ and dose‐dependent toxicity, while the passivation of the NP surface with an oligo(ethylene glycol) (OEG)‐alkanethiol drastically reduces their uptake and cytotoxicity. The exposure to growth media containing SPs reveals that citrate‐capped AgNPs are promptly coated and stabilized by proteins, while the AgNPs resulting from capping with the OEG‐alkanethiol are more resistant to adsorption of proteins onto their surface. Using NIH‐3T3 cultured in serum‐free, the key role of the adsorption of SPs onto surface of NPs is shown as only AgNPs with a preformed protein corona can be internalized by the cells and, consequently, carry out their inherent cytotoxic activity.  相似文献   

8.
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo‐ and hetero‐functional fluorescence‐encoded gold nanoparticles (Au‐NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)‐based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV‐Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence‐activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero‐functionalized Au‐NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.  相似文献   

9.
The size effect on the cellular uptake of nanoparticles (NPs) has been extensively studied, but it is still not well understood. Herein, a reductionist approach is used to minimize all influencing factors except the particle size, and co‐exposure of different‐sized silica nanoparticles (SNPs) is adopted instead of the common single exposure. SNPs are found being internalized by Hela cells in serum‐free medium mainly via clathrin‐dependent endocytosis, thus simplifying the data analysis for reliable attribution to size effects. Remarkably, even though at conditions that the size effects seem very small or even undetectable in the common single exposure experiments, the co‐exposure experiments reveal significant size effects due to an unexpected interplay between two different‐sized SNPs. Namely, the bigger SNPs significantly promote the cellular uptake of the smaller ones, while the smaller SNPs inhibit the internalization of the bigger ones, with a total uptake increase of the particle number of SNPs in the cells. This strong interplay between different‐sized NPs might unavoidably exist within most “single‐sized” NP products, whose sizes actually distribute in certain ranges, thus urging reconsideration of the size effect on the cellular uptake of NPs, for the benefits of both bioapplications and safety assessment of nanomaterials.  相似文献   

10.
In order to elucidate mechanisms of nanoparticle (NP)–cell interactions, a detailed knowledge about membrane–particle interactions, intracellular distributions, and nucleus penetration capabilities, etc. becomes indispensable. The utilization of NPs as additives in many consumer products, as well as the increasing interest of tailor‐made nanoobjects as novel therapeutic and diagnostic platforms, makes it essential to gain deeper insights about their biological effects. Transmission electron microscopy (TEM) represents an outstanding method to study the uptake and intracellular fate of NPs, since this technique provides a resolution far better than the particle size. Additionally, its capability to highlight ultrastructural details of the cellular interior as well as membrane features is unmatched by other approaches. Here, a summary is provided on studies utilizing TEM to investigate the uptake and mode‐of‐action of tailor‐made polymer nanoparticles in mammalian cells. For this purpose, the capabilities as well as limitations of TEM investigations are discussed to provide a detailed overview on uptake studies of common nanoparticle systems supported by TEM investigations. Furthermore, methodologies that can, in particular, address low‐contrast materials in electron microscopy, i.e., polymeric and polymer‐modified nanoparticles, are highlighted.  相似文献   

11.
The electrochemical behavior of copper oxide nanoparticles is investigated at both the single particle and at the ensemble level in neutral aqueous solutions through the electrode‐particle collision method and cyclic voltammetry, respectively. The influence of Cl? and NO3? anions on the electrochemical processes occurring at the nanoparticles is further evaluated. The electroactivity of CuO nanoparticles is found to differ between the two types of experiments. At the single‐particle scale, the reduction of the CuO nanoparticles proceeds to a higher extent in the presence of chloride ion than of nitrate ion containing solutions. However, at the multiparticle scale the CuO reduction proceeds to the same extent regardless of the type of anions present in solution. The implications for assessing realistically the environmental fate and therefore the toxicity of metal‐based nanoparticles in general, and copper‐based nanoparticles in particular, are discussed.  相似文献   

12.
Surface‐charge measurements of mammalian cells in terms of Zeta potential are demonstrated as a useful biological characteristic in identifying cellular interactions with specific nanomaterials. A theoretical model of the changes in Zeta potential of cells after incubation with nanoparticles is established to predict the possible patterns of Zeta‐potential change to reveal the binding and internalization effects. The experimental results show a distinct pattern of Zeta‐potential change that allows the discrimination of human normal breast epithelial cells (MCF‐10A) from human cancer breast epithelial cells (MCF‐7) when the cells are incubated with dextran coated iron oxide nanoparticles that contain tumor‐homing F3 peptides, where the tumor‐homing F3 peptide specifically bound to nucleolin receptors that are overexpressed in cancer breast cells.  相似文献   

13.
14.
15.
Toxicological effects of nanoparticles are associated with their internalization into cells. Hence, there is a strong need for techniques revealing the interaction between particles and cells as well as quantifying the uptake at the same time. For that reason, herein optical dark‐field microscopy is used in conjunction with transmission electron microscopy to investigate the uptake of gold nanoparticles into epithelial cells with respect to shape, stabilizing agent, and surface charge. The number of internalized particles is strongly dependent on the stabilizing agent, but not on the particle shape. A test of metabolic activity shows no direct correlation with the number of internalized particles. Therefore, particle properties besides coating and shape are suspected to contribute to the observed toxicity.  相似文献   

16.
The potential toxicity of nanoparticles is addressed by utilizing a putative attractive model in developmental biology and genetics: the zebrafish (Danio rerio). Transparent zebrafish embryos, possessing a high degree of homology to the human genome, offer an economically feasible, medium‐througput screening platform for noninvasive real‐time assessments of toxicity. Using colloidal silver (cAg) and gold nanoparticles (cAu) in a panoply of sizes (3, 10, 50, and 100 nm) and a semiquantitative scoring system, it is found that cAg produces almost 100% mortality at 120 h post‐fertilization, while cAu produces less than 3% mortality at the same time point. Furthermore, while cAu induces minimal sublethal toxic effects, cAg treatments generate a variety of embryonic morphological malformations. Both cAg and cAu are taken up by the embryos and control experiments, suggesting that cAg toxicity is caused by the nanoparticles themselves or Ag+ that is formed during in vivo nanoparticle destabilization. Although cAg toxicity is slightly size dependent at certain concentrations and time points, the most striking result is that parallel sizes of cAg and cAu induce significantly different toxic profiles, with the former being toxic and the latter being inert in all exposed sizes. Therefore, it is proposed that nanoparticle chemistry is as, if not more, important than specific nanosizes at inducing toxicity in vivo. Ultimately such assessments using the zebrafish embryo model should lead to the identification of nanomaterial characteristics that afford minimal or no toxicity and guide more rational designs of materials on the nanoscale.  相似文献   

17.
Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag+. In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release leading to a sub‐chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub‐chronic lung injury potential.  相似文献   

18.
19.
20.
Engineered nanoparticles (NPs) undergo physical, chemical, and biological transformation after environmental release, resulting in different properties of the “aged” versus “pristine” forms. While many studies have investigated the ecotoxicological effects of silver (Ag) NPs, the majority focus on “pristine” Ag NPs in simple exposure media, rather than investigating realistic environmental exposure scenarios with transformed NPs. Here, the effects of “pristine” and “aged” Ag NPs are systematically evaluated with different surface coatings on Daphnia magna over four generations, comparing continuous exposure versus parental only exposure to assess recovery potential for three generations. Biological endpoints including survival, growth and reproduction and genetic effects associated with Ag NP exposure are investigated. Parental exposure to “pristine” Ag NPs has an inhibitory effect on reproduction, inducing expression of antioxidant stress related genes and reducing survival. Pristine Ag NPs also induce morphological changes including tail losses and lipid accumulation associated with aging phenotypes in the heart, abdomen, and abdominal claw. These effects are epigenetic remaining two generations post‐maternal exposure (F2 and F3). Exposure to identical Ag NPs (same concentrations) aged for 6 months in environmentally realistic water containing natural organic matter shows considerably reduced toxicological effects in continuously exposed generations and to the recovery generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号