首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Short glass fibers were added to poly(vinyl chloride) (PVC)/wood flour composites as reinforcement agents. Unnotched and notched impact strength of PVC/wood flour/glass fiber hybrid composites could be increased significantly without losing flexural properties by adding type L glass fibers and over 40% of PVC. There was no such improvement when using type S glass fiber. The impact strength of hybrid composites increased along with the increment of the type L glass fiber content at a 50% PVC content. At high PVC contents, impact fracture surfaces were characterized by wood particle, glass fiber breakage and pullout, whereas interfacial debonding was the dominant fracture mode at higher filler concentrations. The significant improvement in impact strength of hybrid composites was attributed to the formation of the three‐dimensional network glass fiber architecture between type L glass fibers and wood flour.  相似文献   

2.
This report describes the influence, of (a) degree of biaxial orientation, (b) stretching rate, and (c) stretching temperature on the tensile, dynamic mechanical and dielectric properties of non-impact modified PVC. A new parameter designated “planar strain” is used to correlate anisotropic property values with both equal and unequal biaxial stretching in a single two-dimensional plot, thereby providing a direct comparison of the effects of two or more biaxial stretching ratios. It is shown that optimum stretching conditions depend to some extent upon end use and that a 2 × 2 stretch ratio is optimum for impact resistance. The actual property/processing condition relationships exhibit very complicated interactions and are correlated empirically in this study. The dynamic measurements suggest that overall local segmental beta motion is increased after orientation but that the relative chain alignment makes it more difficult to activate this motion.  相似文献   

3.
The impact strength of microcellular poly(vinyl chloride) (PVC) produced from an industrial formulation was investigated. The solid‐state process with carbon dioxide as the blowing agent was used to prepare the specimens. Processing conditions were explored to produce microcellular PVC with a relative density of 0.6 and higher. These foams were impact tested by using a falling‐weight impact tester. Impact strength of microcellular PVC was found to decrease linearly with relative density. The gas saturation pressure did not significantly affect the impact strength of microcellular PVC foams. Microcellular PVC foams with up to 40% reduction in density possessed a normalized mean failure energy of 3.8 J/mm (0.85 in.‐lb/0.001 in.).  相似文献   

4.
A novel process for preparation of conductive polypyrrole/poly(vinyl chloride) (PPy/PVC) composites by pre-localization of an intrinsically conducting PPy phase in a PVC matrix has been developed. This process involves encapsulating PVC particles with a thin layer of PPy, and subsequently compacting this PPy-encapsulated PVC powder by compression molding. The current-voltage characteristics and electrical conductivity of the pre-localized PPy/PVC composites were determined. The change of the current-voltage characteristics from linear to nonlinear behavior with increasing PPy content in the composites is discussed in the view of the intermolecular hopping and tunneling of electrons. The tensile properties, dynamic mechanical behavior, and microhardness of the pre-localized PPy/PVC composites were studied as a function of PPy content. A percolation threshold of 0.3 wt% is achieved in the pre-localized PPy/PVC composites. This value is much lower than those of the conventional conductive composite materials containing a random distribution of PPy fillers. The samples with a PPy content of 1.6 wt% or above have high conductivity and still preserve reasonable mechanical properties.  相似文献   

5.
Blends of poly(vinyl chloride) (PVC) with polycaprolactone (PCL) of different compositions were prepared from solutions in tetrahydrofuran (THF). The dried blends were stretched at different temperatures above the glass transition, and the birefringence and mechanical properties were studied. It is shown that the birefringence of PVC and the 75/25 PVC/PCL blend follows an affine deformation scheme with a decreasing number of segments with deformation. The 50/50 PVC/PCL blend shows a complex orientation behavior because of the presence of crystallinity in the PCL phase. The mechanical properties of the blends are shown to increase with orientation, and the aggregate model is acceptably followed by the amorphous oriented blends.  相似文献   

6.
Methylene blue (MB) adsorption studies were performed with poly(vinyl chloride)‐(dioctyl phthalate)‐silica composites, which were obtained by using plastisol‐plastigel technology. The films were flexible, having elastic modulus of 1.0–1.5 GPa. Diminishing MB concentration in the aqueous phase was followed as the adsorption process advanced by using visible spectroscopy. Contributions of the individual components of the composites to adsorption were also investigated. Although the MB adsorption capacity was extensively high for silica, it was moderate for the composite, most likely owing to the occlusion of pores of silica by plasticizer to some extent. The improvement of MB adsorption capacity of the composites as the silica ratio increased was explicitly deduced from the optical microscopy photographs. The diffusion coefficients of MB through the composites were 5 × 10?13, 6 × 10?13, and 3 × 10?13 m2 s?1 with regression coefficients of 0.73, 0.89, and 0.88 for 0, 2, and 16% silica‐containing composites, respectively. Because of the slow diffusion of MB in poly(vinyl chloride)‐silica composites, using them as dynamic column adsorbent was not practical. However, these versatile plastics can be used as plastic labels, colored clothing, leather substitutes, antimicrobial medical devices, and laser printable surfaces. J. VINYL ADDIT. TECHNOL., 21:42–50, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
The mechanical properties of the poly (vinyl chloride) (PVC) and poly (glycidyl methacrylate) [poly (GMA)] blend system and the PVC and poly (hydroxyethyl methacrylate) [poly (HEMA)] blend system and their crosslinked films were investigated. At the same time, the mechanical properties for the corresponding graft copolymers such as PVC-g-GMA, PVC-g-HEMA, and their crosslinked films were also investigated in this study. The results showed that the tensile strengths for PVC–poly (GMA) blend systems were higher than those for PVC-g-GMA graft copolymer, and the tensile strengths for PVC-g-HEMA were higher than those for PVC-poly (HEMA) blend systems. However, the mechanical properties for the PVC–poly (GMA) blend system were not affected by the crosslinking of the blend system, but those for PVC-poly (HEMA) and their graft copolymers decreased with an increase of the equivalent ratio ([NCO]/[OH]) of the crosslinker. Finally, the surface hydrophilicity of the PVC-g-HEMA graft copolymer and PVC-poly (HEMA) blends were also assessed through measuring the contact angle. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 307–319, 1998  相似文献   

8.
A detailed review of the material published to date on the flow properties of poly(vinyl chloride) is given. The dependence of viscosity on concentration molecular weight, molecular weight distribution, shear and temperature for concentrated and molten poly (vinyl chloride) is considered. Polymer blends and plastisols are also included.  相似文献   

9.
Natural, activated, and modified microzeolites were studied individually and in combination with ammonium sulfamate as high-melting dispersed additives. The strength—deformation properties of poly(vinyl chloride) were improved within the interval of 3–8 wt % additive. The strengthening effect due to the considered dispersed additives can be ascribed to the optimal adhesive interaction of the phase-boundary surface and to the formation of a partially ordered dispersed phase. The tetrahedral configuration of the modified microzeolite that contains 3.5–4% zinc in its crystal lattice remains unchanged, but exhibits a reduced birefringence. These relationships are of exceptional importance for the use of poly(vinyl chloride). The introduction of certain amounts of the additives improves the melt flow of the polymer and facilitates the processibility of the compositions. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The main objective of this study was to investigate and compare the mechanical properties of poly(vinyl chloride) (PVC) composites filled with calcium carbonate (CaCO3), talc, and talc/CaCO3. Talc and CaCO3 with different grades were incorporated into the PVC matrix. To produce the composites, the PVC resin, fillers, and other additives were first dry‐blended by using a laboratory mixer before being milled into sheets in a two‐roll mill. Test specimens were prepared by compression molding, after which the mechanical properties of the composites were determined. Single and hybrid filler loadings used were fixed at 30 phr (parts per hundred parts of resin). Talc‐filled composite showed the highest flexural modulus and the lowest impact strength, whereas uncoated, ground, 1‐μm CaCO3 (SM 90) showed optimum properties in terms of impact strength and flexural modulus among all grades of CaCO3. It was selected to combine with talc at different ratios in the hybrid composites. The impact strength of the hybrid composites gradually increased with increasing SM 90 content, but the flexural and tensile properties showed an opposite behavior. Hybrid (10 phr talc):(20 phr SM 90)‐filled PVC composite reached a synergistic hybridization with balanced properties in impact strength, as well as flexural and tensile properties. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
The aim of this work is to study the valorization of regenerated low density polyethylene (rLDPE) by blending with PVC in the presence of chlorinated polyethylene (CPE) as compatibilizer. For this purpose, four rLDPE samples coming from neat or dirty wastes were used. They were obtained after milling, washing, and extrusion in a conventional recycling plant. They were first characterized in terms of physicochemical (density, melt flow index, water absorption, and level of oxidation by Fourier transform infrared spectroscopy) and mechanical (tensile and shore D hardness) properties. The effect of the ratio of PVC on these physical and mechanical properties was then investigated. These binary blends exhibited lower properties than those of the separated polymers. The addition of CPE to the binary blend with weight proportion of 50/50 leads to a substantial improvement of the considered properties which is due to a better interfacial adhesion between rLDPE and PVC as evidenced by the analysis of the morphology of the blends by scanning electron microscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The properties of poly(vinyl chlorlde)/ehlorinated poly(vinyl chloride) (61.6 percent C1) blends, prepared by melt and solution blending, were measured by various tests. Based on the chlorinated poly(vinyl chloride) (CPVC) composition, percent chlorine, and mole percent CC12 groups, these blends were expected to show intermediate properties between miscible and immiscible systems. Indicative of miscible behavior were the single glass transition temperatures over the entire composition range for both melt and solution blended mixtures. A single phase was also indicated by transmission electron microscopy. However, the yield stress showed a minimum value less than either of the pure components in the 50 to 75 percent CPVC range, which is characteristic of two-phased systems. Specific volume, glass transition temperature, and heat distortion temperature were linear with binary composition. The storage modulus showed a small maximum, suggesting a weak interaction between the two miscible polymers. Heats of melting for the residual PVC crystallinity were also less than expected from linear additivity. At 160°C and 210°C, the logarithm of the complex viscosity was essentially linear with volume fraction of CPVC, except for a very slight decrease in the 50 to 75 percent CPVC range, which may have been a result of lower crystallinity. At 140°C, the complex viscosity of the CPVC was less than that of PVC owing to the higher crystallinity of the latter. The viscosities were similar at 160°C, but at 210°C, where most of the crystallites had melted, the complex viscosity of the CPVC was higher because of its higher glass transition temperature.  相似文献   

13.
A sample of poly(vinyl chloride) (PVC) and a polar plasticizer consisting of dioctyl phthalate (DOP) and dibutyl phthalate (DBP) was prepared and found to possess inconvenient electrical properties (permittivity, dielectric loss, and conductivity). Different samples of PVC compositions were formulated from the PVC–DOP–DBP system and also variable proportions of a copolymer of 1-octadecene-maleic anhydride or its hexadecylester. Lead stearate as a heat stabilizer and kaolin as a filler were added. The effect of copolymer structure on the electrical properties of the PVC–DOP–DBP system was studied to obtain a plasticized PVC of good electrical insulation character. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Modification of nanoparticles through graft polymerization is able to change the chemical nature of the particles' surfaces and provides an effective means for the preparation of nano‐fillers specified for composites manufacturing. The present work focuses on the mechanical role of grafted nano‐SiO2 particles in high density polyethylene composites prepared by melt compounding. The experimental results show that at a content of 0.75 vol%, the modified nano‐silica results in a rise in tensile stiffness, tensile strength and impact strength of the composites. The grafted nanoparticles can improve the mechanical performance of the matrix polymer more effectively than the untreated version. In addition, a further enhancement of the composites stiffness and strength can be achieved by crosslinking the concentrated masterbatches, which has not yet been revealed in the authors' previous works on grafted nano‐SiO2 particles/polypropylene composites. It is thus revealed that the introduction of the grafting polymers onto the nanoparticles increases the tailorability of the composites.  相似文献   

15.
考察了2,3-环氧丙氧乙基笼型倍半硅氧烷(G-POSS)对聚氯乙烯(PVC)共混物力学和热性能的影响。结果表明:加入G-POSS可缩短PVC的塑化时间;100 g PVC中G-POSS用量不超过7 g时共混物的拉伸强度得到提高;加入G-POSS可改善PVC的耐热性能,G-POSS用量为13 g时,共混物的维卡软化温度和初始分解温度分别提高12,27℃。  相似文献   

16.
Correlations have been found between solubility parameters and some mechanical properties of a series of vinyl polymers containing 56.6–69.9% chlorine when tested below their glass transition temperature. It is shown that stress at yield increases similarly with chlorine content and with the volume occupied by a monomer unit in the polymer. Using the Reiner-Weissenberg theory of the dynamic strength of materials as a criterion and a rheological model based on a pair of Maxwell bodies in parallel with a Hooke spring, the amount of dissipated and conserved work to yield point was calculated. A parameter, defined as the ratio of work to cohesive energy density, describes the efficiency of the system. The overall efficiency of the system, based on work to break, and proportional efficiency, based on work to yield point, are affected by chlorine content and strain rate. In addition, a potential energy parameter is defined which describes the cohesive energy per volume occupied by monomer unit of the polymer. This parameter is proportional to the total work to break as well as to the ratio of the residual work after yield to total work at all strain rates tested. The major portion of work is conserved up to yield; only a small portion is dissipated. From the yield point to break, after the onset of viscous flow, the major part of this work is dissipated.  相似文献   

17.
The properties of powders depend mainly upon the characteristics of the individual particles and their interactions. In the case of PVC resins, particle characteristics vary broadly depending upon the manufacturing process used or variables within a given process. In this paper, the effects of grain size, size distribution, grain shape, degree of compaction and static on the bulk density and flow properties of PVC resins are studied. Results indicate that grain shape mainly affects bulk density while grain size and distribution mainly affect powder flow. The degree of compaction and the amount of static on the resin grains are variables which can overwhelm other powder properties.  相似文献   

18.
Non-activated carbons were prepared by the thermal degradation of poly(vinyl chloride) (PVC) in air or nitrogen atmosphere in the temperature range 600-1000°C. Carbon dioxide-activated carbons from PVC were also obtained by gasification of non-activated carbon from PVC at 900°C burn-off (4-50%). Thermal degradation in air atmosphere gave high carbon yield because the oxygen of air increased crosslinking at lower temperature and chemisorbed on the carbon surface at high temperatures. Thermal degradation in air and gasification with carbon dioxide created carbon-oxygen surface groups which increased the hydrophilicity of the carbon surface and consequently increased water adsorption capacity. Gasification with carbon dioxide to high burn-off created new pores and widened already existing pores.  相似文献   

19.
孙水升  张玲  李春忠  曹宏明  周秋玲 《化工学报》2005,56(11):2233-2239
选择了不同的表面处理剂对纳米CaCO3进行表面改性. 研究了不同表面处理剂对CaCO3/PVC纳米复合材料微观结构、界面结合强度、力学性能及加工性能的影响.研究表明,钛酸酯偶联剂处理可使纳米CaCO3颗粒在PVC基体中达到良好分散,明显改善纳米CaCO3颗粒与PVC基体之间的界面结合,并提高其界面结合强度.力学性能和流变性能研究表明,钛酸酯处理的纳米CaCO3填充PVC具有更高的拉伸强度、冲击强度以及更低的平衡转矩, 而且CaCO3/PVC复合材料的冲击韧性在填充量为20%(mass)时达到最大值26.5 kJ•m-2,是纯PVC的4倍.  相似文献   

20.
Composites of poly(vinyl alcohol) (PVA) with sulfonated graphene (SG) show fibrillar, dendritic and rod like structures for SG1, SG3 and SG5 samples, respectively, where the number indicates weight percent of SG. Differential scanning calorimetry shows a new peak in addition to that of PVA arising from the supramolecular organization of the components in SG1 and SG3. Seventeen percent and 36% increases of PVA crystalline thickness and 77% and 79% increases in amorphous overlayer thickness for SG1 and SG3 over PVA are evident from small angle X-ray scattering results but SG5 does not show any change. Atomic force microscopy results of SG suggest aggregation at higher concentration and the composites exhibit composition dependent mechanical properties with the highest increase of stress (177%), strain at break (45%) and toughness (657%) in SG3 over PVA. Young’s modulus increases with increasing SG concentration with a maximum 180% increase in the SG5 sample. The storage modulus of SG3 shows the highest increase (1005%) over PVA. A 10 orders of magnitude increase of dc conductivity over PVA and a 10-fold increase in the dendritic SG3 to that of other composites are observed. SG1 is semiconducting, SG3 shows an electronic memory and SG5 exhibits a rectification property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号