首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A large set of FoxOs-dependent genes play a primary role in controlling muscle mass during hindlimb unloading. Mitochondrial dysfunction can modulate such a process. We hypothesized that endurance exercise before disuse can protect against disuse-induced muscle atrophy by enhancing peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) expression and preventing mitochondrial dysfunction and energy-sensing AMP-activated protein kinase (AMPK) activation. We studied cross sectional area (CSA) of muscle fibers of gastrocnemius muscle by histochemistry following 1, 3, 7, and 14 days of hindlimb unloading (HU). We used Western blotting and qRT-PCR to study mitochondrial dynamics and FoxOs-dependent atrogenes’ expression at 1 and 3 days after HU. Preconditioned animals were submitted to moderate treadmill exercise for 7 days before disuse. Exercise preconditioning protected the gastrocnemius from disuse atrophy until 7 days of HU. It blunted alterations in mitochondrial dynamics up to 3 days after HU and the expression of most atrogenes at 1 day after disuse. In preconditioned mice, the activation of atrogenes resumed 3 days after HU when mitochondrial dynamics, assessed by profusion and pro-fission markers (mitofusin 1, MFN1, mitofusin 2, MFN2, optic atrophy 1, OPA1, dynamin related protein 1, DRP1 and fission 1, FIS1), PGC1α levels, and AMPK activation were at a basal level. Therefore, the normalization of mitochondrial dynamics and function was not sufficient to prevent atrogenes activation just a few days after HU. The time course of sirtuin 1 (SIRT1) expression and content paralleled the time course of atrogenes’ expression. In conclusion, seven days of endurance exercise counteracted alterations of mitochondrial dynamics and the activation of atrogenes early into disuse. Despite the normalization of mitochondrial dynamics, the effect on atrogenes’ suppression died away within 3 days of HU. Interestingly, muscle protection lasted until 7 days of HU. A longer or more intense exercise preconditioning may prolong atrogenes suppression and muscle protection.  相似文献   

2.
Periods of muscle disuse promote marked mitochondrial alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. Thus, understanding the molecular underpinnings of muscle mitochondrial decline with prolonged inactivity is of considerable interest. There are translational applications to patients subjected to limb immobilization following injury, illness-induced bed rest, neuropathies, and even microgravity. Studies in these patients, as well as on various pre-clinical rodent models have elucidated the pathways involved in mitochondrial quality control, such as mitochondrial biogenesis, mitophagy, fission and fusion, and the corresponding mitochondrial derangements that underlie the muscle atrophy that ensues from inactivity. Defective organelles display altered respiratory function concurrent with increased accumulation of reactive oxygen species, which exacerbate myofiber atrophy via degradative pathways. The preservation of muscle quality and function is critical for maintaining mobility throughout the lifespan, and for the prevention of inactivity-related diseases. Exercise training is effective in preserving muscle mass by promoting favourable mitochondrial adaptations that offset the mitochondrial dysfunction, which contributes to the declines in muscle and whole-body metabolic health. This highlights the need for further investigation of the mechanisms in which mitochondria contribute to disuse-induced atrophy, as well as the specific molecular targets that can be exploited therapeutically.  相似文献   

3.
Endurance exercise induces various adaptations that yield health benefits; however, the underlying molecular mechanism has not been fully elucidated. Given that it has recently been accepted that inflammatory responses are required for a specific muscle adaptation after exercise, this study investigated whether toll-like receptor (TLR) 4, a pattern recognition receptor that induces proinflammatory cytokines, is responsible for exercise-induced adaptations in mouse skeletal muscle. The TLR4 mutant (TLR4m) and intact TLR4 control mice were each divided into 2 groups (sedentary and voluntary wheel running) and were housed for six weeks. Next, we removed the plantaris muscle and evaluated the expression of cytokines and muscle regulators. Exercise increased cytokine expression in the controls, whereas a smaller increase was observed in the TLR4m mice. Mitochondrial markers and mitochondrial biogenesis inducers, including peroxisome proliferator-activated receptor beta and heat shock protein 72, were increased in the exercised controls, whereas this upregulation was attenuated in the TLR4m mice. In contrast, exercise increased the expression of molecules such as peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and glucose transporter 4 in both the controls and TLR4m mice. Our findings indicate that exercise adaptations such as mitochondrial biogenesis are mediated via TLR4, and that TLR4-mediated inflammatory responses could be involved in the mechanism of adaptation.  相似文献   

4.
Skeletal muscle is a heterogeneous tissue composed of a variety of functionally different fiber types. Slow-twitch type I muscle fibers are rich with mitochondria, and mitochondrial biogenesis promotes a shift towards more slow fibers. Leucine, a branched-chain amino acid (BCAA), regulates slow-twitch muscle fiber expression and mitochondrial function. The BCAA content is increased in porcine whole-blood protein hydrolysates (PWBPH) but the effect of PWBPH on muscle fiber type conversion is unknown. Supplementation with PWBPH (250 and 500 mg/kg for 5 weeks) increased time to exhaustion in the forced swimming test and the mass of the quadriceps femoris muscle but decreased the levels of blood markers of exercise-induced fatigue. PWBPH also promoted fast-twitch to slow-twitch muscle fiber conversion, elevated the levels of mitochondrial biogenesis markers (SIRT1, p-AMPK, PGC-1α, NRF1 and TFAM) and increased succinate dehydrogenase and malate dehydrogenase activities in ICR mice. Similarly, PWBPH induced markers of slow-twitch muscle fibers and mitochondrial biogenesis in C2C12 myotubes. Moreover, AMPK and SIRT1 inhibition blocked the PWBPH-induced muscle fiber type conversion in C2C12 myotubes. These results indicate that PWBPH enhances exercise performance by promoting slow-twitch muscle fiber expression and mitochondrial function via the AMPK/SIRT1 signaling pathway.  相似文献   

5.
It is well-established that prolonged exposure to real or simulated microgravity/disuse conditions results in a significant reduction in the rate of muscle protein synthesis (PS) and loss of muscle mass. Muscle protein synthesis is largely dependent upon translational capacity (ribosome content), the regulation of which is poorly explored under conditions of mechanical unloading. Glycogen synthase kinase-3 (GSK-3) (a negative regulator of PS) is known to be activated in rat soleus muscle under unloading conditions. We hypothesized that inhibition of GSK-3 activity under disuse conditions (hindlimb suspension, HS) would reduce disuse-induced downregulation of ribosome biogenesis in rat soleus muscle. Wistar rats were randomly divided into four groups: (1) vivarium control (C), (2) vivarium control + daily injections (4 mg/kg) of AR-A014418 (GSK-3 inhibitor) for 7 days, (3) 7-day HS, (4) 7-day HS + daily injections (4 mg/kg) of AR-A014418. GSK-3beta and glycogen synthase 1 (GS-1) phosphorylation levels were measured by Western-blotting. The key markers of ribosome biogenesis were assessed via agarose gel-electrophoresis and RT-PCR. The rate of muscle PS was assessed by puromycin-based SUnSET method. As expected, 7-day HS resulted in a significant decrease in the inhibitory Ser9 GSK-3beta phosphorylation and an increase in GS-1 (Ser641) phosphorylation compared to the C group. Treatment of rats with GSK-3 inhibitor prevented HS-induced increase in GS1 (Ser641) phosphorylation, which was indicative of GSK-3 inhibition. Administration of GSK-3 inhibitor partly attenuated disuse-induced downregulation of c-Myc expression as well as decreases in the levels of 45S pre-rRNA and 18S + 28S rRNAs. These AR-A014418-induced alterations in the markers of ribosome biogenesis were paralleled with partial prevention of a decrease in the rate of muscle PS. Thus, inhibition of GSK-3 during 7-day HS is able to partially attenuate the reductions in translational capacity and the rate of PS in rat soleus muscle.  相似文献   

6.
7.
The effects of insulin on the bioenergetic and thermogenic capacity of brown adipocyte mitochondria were investigated by focusing on key mitochondrial proteins. Two-month-old male Wistar rats were treated acutely or chronically with a low or high dose of insulin. Acute low insulin dose increased expression of all electron transport chain complexes and complex IV activity, whereas high dose increased complex II expression. Chronic low insulin dose decreased complex I and cyt c expression while increasing complex II and IV expression and complex IV activity. Chronic high insulin dose decreased complex II, III, cyt c, and increased complex IV expression. Uncoupling protein (UCP) 1 expression was decreased after acute high insulin but increased following chronic insulin treatment. ATP synthase expression was increased after acute and decreased after chronic insulin treatment. Only a high dose of insulin increased ATP synthase activity in acute and decreased it in chronic treatment. ATPase inhibitory factor protein expression was increased in all treated groups. Confocal microscopy showed that key mitochondrial proteins colocalize differently in different mitochondria within a single brown adipocyte, indicating mitochondrial mosaicism. These results suggest that insulin modulates the bioenergetic and thermogenic capacity of rat brown adipocytes in vivo by modulating mitochondrial mosaicism.  相似文献   

8.
The maintenance of mitochondrial integrity is critical for muscle health. Mitochondria, indeed, play vital roles in a wide range of cellular processes, including energy supply, Ca2+ homeostasis, retrograde signaling, cell death, and many others. All mitochondria-containing cells, including skeletal muscle cells, dispose of several pathways to maintain mitochondrial health, including mitochondrial biogenesis, mitochondrial-derived vesicles, mitochondrial dynamics (fusion and fission process shaping mitochondrial morphology), and mitophagy—the process in charge of the removal of mitochondria though autophagy. The loss of skeletal muscle mass (atrophy) is a major health problem worldwide, especially in older people. Currently, there is no treatment to counteract the progressive decline in skeletal muscle mass and strength that occurs with aging, a process termed sarcopenia. There is increasing data, including our own, suggesting that accumulation of dysfunctional mitochondria contributes to the development of sarcopenia. Impairments in mitochondrial dynamics and mitophagy were recently proposed to contribute to sarcopenia. This review summarizes the current state of knowledge on the role played by mitochondrial dynamics and mitophagy in skeletal muscle health and in the development of sarcopenia. We also highlight recent studies showing that enhancing mitophagy in skeletal muscle is a promising therapeutic target to prevent or even treat skeletal muscle dysfunction in the elderly.  相似文献   

9.
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.  相似文献   

10.
Mitigation of calcium-dependent destruction of skeletal muscle mitochondria is considered as a promising adjunctive therapy in Duchenne muscular dystrophy (DMD). In this work, we study the effect of intraperitoneal administration of a non-immunosuppressive inhibitor of calcium-dependent mitochondrial permeability transition (MPT) pore alisporivir on the state of skeletal muscles and the functioning of mitochondria in dystrophin-deficient mdx mice. We show that treatment with alisporivir reduces inflammation and improves muscle function in mdx mice. These effects of alisporivir were associated with an improvement in the ultrastructure of mitochondria, normalization of respiration and oxidative phosphorylation, and a decrease in lipid peroxidation, due to suppression of MPT pore opening and an improvement in calcium homeostasis. The action of alisporivir was associated with suppression of the activity of cyclophilin D and a decrease in its expression in skeletal muscles. This was observed in both mdx mice and wild-type animals. At the same time, alisporivir suppressed mitochondrial biogenesis, assessed by the expression of Ppargc1a, and altered the dynamics of organelles, inhibiting both DRP1-mediated fission and MFN2-associated fusion of mitochondria. The article discusses the effects of alisporivir administration and cyclophilin D inhibition on mitochondrial reprogramming and networking in DMD and the consequences of this therapy on skeletal muscle health.  相似文献   

11.
Mitochondria intricately modulate their energy production through the control of mitochondrial adaptation (mitochondrial biogenesis, fusion, and/or fission) to meet energy demands. Nutrient overload may result in dysregulated mitochondrial biogenesis, morphology toward mitochondrial fragmentation, and oxidative stress in the skeletal muscle. In addition, physical activity and diet components influence mitochondrial function. Exercise may stimulate mitochondrial biogenesis and promote mitochondrial fusion/fission in the skeletal muscle. Moreover, some dietary fatty acids, such as n‐3 polyunsaturated fatty acids and conjugated linoleic acid, have been identified to positively regulate mitochondrial adaptation in the skeletal muscle. This review discusses the association of mitochondrial impairments and obesity, and presents an overview of various mechanisms of which exercise training and mitochondrial nutrients promote mitochondrial function in the skeletal muscle.  相似文献   

12.
Sixteen adult, 4-month-old male Wistar rats were randomly assigned to the training group (n = 8) or the control group (n = 8). We elucidated the effects of 8 weeks of endurance training on coenzyme Q (Q) content and the formation of reactive oxygen species (ROS) at the tissue level and in isolated mitochondria of the rat heart, liver and brain. We demonstrated that endurance training enhanced mitochondrial biogenesis in all tested organs, while a significant increase in the Q redox state was observed in the heart and brain, indicating an elevated level of QH2 as an antioxidant. Moreover, endurance training increased the mQH2 antioxidant pool in the mitochondria of the heart and liver, but not in the brain. At the tissue and isolated mitochondria level, an increase in ROS formation was only observed in the heart. ROS formation observed in the mitochondria of individual rat tissues after training may be associated with changes in the activity/amount of individual components of the oxidative phosphorylation system and its molecular organization, as well as with the size of the oxidized pool of mitochondrial Q acting as an electron carrier in the respiratory chain. Our results indicate that tissue-dependent changes induced by endurance training in the cellular and mitochondrial QH2 pool acting as an antioxidant and in the mitochondrial Q pool serving the respiratory chain may serve important roles in energy metabolism, redox homeostasis and the level of oxidative stress.  相似文献   

13.
Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer’s disease, or the most common neurodegenerative motor disorder, Parkinson’s disease. While there is evidence that exercise induces signalling from skeletal muscle to the brain, the mechanistic understanding of the crosstalk along the muscle–brain axis is incompletely understood. Mitochondria in both organs, however, seem to be central players. Here, we provide an overview on the central role of mitochondria in exercise-induced communication routes from muscle to the brain. These routes include circulating factors, such as myokines, the release of which often depends on mitochondria, and possibly direct mitochondrial transfer. On this basis, we examine the reported effects of different modes of exercise on mitochondrial features and highlight their expected benefits with regard to neurodegeneration prevention or mitigation. In addition, knowledge gaps in our current understanding related to the muscle–brain axis in neurodegenerative diseases are outlined.  相似文献   

14.
15.
Type 2 diabetes (T2D), one of the most prevalent noncommunicable diseases, is often preceded by insulin resistance (IR), which underlies the inability of tissues to respond to insulin and leads to disturbed metabolic homeostasis. Mitochondria, as a central player in the cellular energy metabolism, are involved in the mechanisms of IR and T2D. Mitochondrial function is affected by insulin resistance in different tissues, among which skeletal muscle and liver have the highest impact on whole-body glucose homeostasis. This review focuses on human studies that assess mitochondrial function in liver, muscle and blood cells in the context of T2D. Furthermore, different interventions targeting mitochondria in IR and T2D are listed, with a selection of studies using respirometry as a measure of mitochondrial function, for better data comparison. Altogether, mitochondrial respiratory capacity appears to be a metabolic indicator since it decreases as the disease progresses but increases after lifestyle (exercise) and pharmacological interventions, together with the improvement in metabolic health. Finally, novel therapeutics developed to target mitochondria have potential for a more integrative therapeutic approach, treating both causative and secondary defects of diabetes.  相似文献   

16.
The phospholipid fatty acid (FA) composition and functional properties of skeletal muscle and liver mitochondria were examined in cold-acclimated (CA, 4°C) ducklings. Phospholipid FA of isolated muscle mitochondria from CA birds were longer and more unsaturated than those from thermoneutral (TN, 25°C) reared ducklings. The rise in long-chain and polyunsaturated FA (PUFA, mainly 20∶4n-6) was associated with a higher State 4 respiration rate and a lower respiratory control ratio (RCR). Hepatic mitochondria, by contrast, were much less affected by cold acclimation. The cold-induced changes in phospholipid FA profile and functional properties of muscle mitochondria were reproduced by giving TN ducklings a diet enriched in grapeseed oil (GO, rich in n-6 FA), suggesting a causal relationship between the membrane structure and mitochondrial functional parameters. However, hepatic mitochondria from ducklings fed the GO diet also showed an enrichment in long-chain PUFA but opposite changes in their biochemical characteristics (lower State 4, higher RCR). It is suggested that the differential modulation of mitochondrial functional properties by membrane lipid composition between skeletal muscle and liver may depend on muscle-specific factors possibly interacting with long-chain PUFA and affecting the proton leakiness of mitochondrial membranes.  相似文献   

17.
Functional alterations in irritable bowel syndrome have been associated with defects in bioenergetics and the mitochondrial network. Effects of high fat, adequate-protein, low carbohydrate ketogenic diet (KD) involve oxidative stress, inflammation, mitochondrial function, and biogenesis. The aim was to evaluate the KD efficacy in reducing the effects of stress on gut mitochondria. Newborn Wistar rats were exposed to maternal deprivation to induce IBS in adulthood. Intestinal inflammation (COX-2 and TRL-4); cellular redox status (SOD 1, SOD 2, PrxIII, mtDNA oxidatively modified purines); mitochondrial biogenesis (PPAR-γ, PGC-1α, COX-4, mtDNA content); and autophagy (Beclin-1, LC3 II) were evaluated in the colon of exposed rats fed with KD (IBD-KD) or standard diet (IBS-Std), and in unexposed controls (Ctrl). IBS-Std rats showed dysfunctional mitochondrial biogenesis (PPAR-γ, PGC-1α, COX-4, and mtDNA contents lower than in Ctrl) associated with inflammation and increased oxidative stress (higher levels of COX-2 and TLR-4, SOD 1, SOD 2, PrxIII, and oxidatively modified purines than in Ctrl). Loss of autophagy efficacy appeared from reduced levels of Beclin-1 and LC3 II. Feeding of animals with KD elicited compensatory mechanisms able to reduce inflammation, oxidative stress, restore mitochondrial function, and baseline autophagy, possibly via the upregulation of the PPAR-γ/PGC-1α axis.  相似文献   

18.
Diabetes mellitus is a systemic metabolic disorder associated with mitochondrial dysfunction, with mitochondrial permeability transition (MPT) pore opening being recognized as one of its pathogenic mechanisms. Alisporivir has been recently identified as a non-immunosuppressive analogue of the MPT pore blocker cyclosporin A and has broad therapeutic potential. The purpose of the present work was to study the effect of alisporivir (2.5 mg/kg/day i.p.) on the ultrastructure and functions of the skeletal muscle mitochondria of mice with diabetes mellitus induced by a high-fat diet combined with streptozotocin injections. The glucose tolerance tests indicated that alisporivir increased the rate of glucose utilization in diabetic mice. An electron microscopy analysis showed that alisporivir prevented diabetes-induced changes in the ultrastructure and content of the mitochondria in myocytes. In diabetes, the ADP-stimulated respiration, respiratory control, and ADP/O ratios and the level of ATP synthase in the mitochondria decreased, whereas alisporivir treatment restored these indicators. Alisporivir eliminated diabetes-induced increases in mitochondrial lipid peroxidation products. Diabetic mice showed decreased mRNA levels of Atp5f1a, Ant1, and Ppif and increased levels of Ant2 in the skeletal muscles. The skeletal muscle mitochondria of diabetic animals were sensitized to the MPT pore opening. Alisporivir normalized the expression level of Ant2 and mitochondrial susceptibility to the MPT pore opening. In parallel, the levels of Mfn2 and Drp1 also returned to control values, suggesting a normalization of mitochondrial dynamics. These findings suggest that the targeting of the MPT pore opening by alisporivir is a therapeutic approach to prevent the development of mitochondrial dysfunction and associated oxidative stress in the skeletal muscles in diabetes.  相似文献   

19.
Protein, total phospholipid, phosphatidyl cholines and phosphatidyl choline fractions from liver mitochondria and microsomes of female rats were analyzed after treatment with CCl4 (0.3 ml of CCl4 suspended in corn oil) or ethionine (50 mg in 0.9% saline) or after feeding a choline deficient, low protein diet for seven days. Phosphatidyl cholines were separated into four fractions differing in the degree of fatty acid unsaturation. Over 50% of total phosphatidyl choline phosphorus was present in fraction 3 of liver mitochondria and microsomes. The major fatty acid in fraction 1 was docosahexaenoic acid. Fraction 4 contains oleic and linoleic acids. Arachidonic acid occurs in fraction 2 and 3. Ethionine decreased the amount of microsomal protein and phosphatidyl choline fraction 1 of mitochondria. Microsomal protein was decreased by CCl4. The choline deficient, low protein diet caused a decrease in mitochondrial and microsomal phospholipids. The amount of the mitochondrial phosphatidyl choline decreased. Corn oil increased the level of phosphatidyl choline fraction 3. Choline deficiency decreased the amount of phosphatidyl choline fraction 3, increased fraction 4 of mitochondria and microsomes and increased fraction 1 of microsomes.  相似文献   

20.
Cytosolic ribosomes (cytoribosomes) are macromolecular ribonucleoprotein complexes that are assembled from ribosomal RNA and ribosomal proteins, which are essential for protein biosynthesis. Mitochondrial ribosomes (mitoribosomes) perform translation of the proteins essential for the oxidative phosphorylation system. The biogenesis of cytoribosomes and mitoribosomes includes ribosomal RNA processing, modification and binding to ribosomal proteins and is assisted by numerous biogenesis factors. This is a major energy-consuming process in the cell and, therefore, is highly coordinated and sensitive to several cellular stressors. In mitochondria, the regulation of mitoribosome biogenesis is essential for cellular respiration, a process linked to cell growth and proliferation. This review briefly overviews the key stages of cytosolic and mitochondrial ribosome biogenesis; summarizes the main steps of ribosome biogenesis alterations occurring during tumorigenesis, highlighting the changes in the expression level of cytosolic ribosomal proteins (CRPs) and mitochondrial ribosomal proteins (MRPs) in different types of tumors; focuses on the currently available information regarding the extra-ribosomal functions of CRPs and MRPs correlated to cancer; and discusses the role of CRPs and MRPs as biomarkers and/or molecular targets in cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号