共查询到20条相似文献,搜索用时 23 毫秒
1.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NO x adsorber catalyst, Pt/K/Al 2O 3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al 2O 3 phase with associated hydroxyl groups at the surface, and an alkalized-Al 2O 3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al 2O 3 and 65% for the alkalized-Al 2O 3. NO 2 and CO 2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al 2O 3 adsorbs 0.087 μmol CO 2/m 2and 2.0 μmol NO 2/m 2, and Pt/K/Al 2O 3 adsorbs 2.0 μmol CO 2/m 2and 6.4 μmol NO 2/m 2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al 2O 3 during both lean and rich periods of the NO x adsorber catalyst cycle. 相似文献
2.
A mean field model, for storage and desorption of NO x in a Pt/BaO/Al 2O 3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al 2O 3; (ii) NO oxidation on Pt/BaO/Al 2O 3; (iii) NO x storage on BaO/Al 2O 3; (iv) NO x storage on Pt/BaO/Al 2O 3 with thermal regeneration and (v) NO x storage on Pt/BaO/Al 2O 3 with regeneration using C 3H 6. In this paper, we focus on the last sub-system. The kinetic model for NO x storage on Pt/BaO/Al 2O 3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NO x storage model on BaO/Al 2O 3. This model was not sufficient to describe the NO x storage experiments for the Pt/BaO/Al 2O 3, because the NO x desorption in TPD experiments was larger for Pt/BaO/Al 2O 3, compared to BaO/Al 2O 3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NO x from Pt/BaO/Al 2O 3. To this NO x storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO 2 and C 3H 6. The main reactions for continuous reduction of NO x occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments. 相似文献
3.
Polycylic aromatic hydrocarbons (PAHs) are listed as carcinogenic and mutagenic priority pollutants, belonging to the environmental endocrine disrupters. Most PAHs in the environment stem from the atmospheric deposition and diesel emission. Consequently, the elimination of PAHs in the off-gases is one of the priority and emerging challenges. Catalytic oxidation has been widely used in the destruction of organic compounds due to its high efficiency (or conversion of reactants), its economic benefits and good applicability. This study investigates the application of the catalytic oxidation using Pt/γ-Al2O3 catalysts to decompose PAHs and taking naphthalene (the simplest and least toxic PAH) as a target compound. It studies the relationships between conversion, operating parameters and relevant factors such as treatment temperatures, catalyst sizes and space velocities. Also, a related reaction kinetic expression is proposed to provide a simplified expression of the relevant kinetic parameters. The results indicate that the Pt/γ-Al2O3 catalyst used accelerates the reaction rate of the decomposition of naphthalene and decreases the reaction temperature. A high conversion (over 95%) can be achieved at a moderate reaction temperature of 480 K and space velocity below 35,000 h−1. Non-catalytic (thermal) oxidation achieves the same conversion at a temperature beyond 1000 K. The results also indicate that Rideal–Eley mechanism and Arrhenius equation can be reasonably applied to describe the data by using the pseudo-first-order reaction kinetic equation with activation energy of 149.97 kJ/mol and frequency factor equal to 3.26 × 1017 s−1. 相似文献
4.
In this work, a kinetic model is constructed to simulate sulfur deactivation of the NO x storage performance of BaO/Al 2O 3 and Pt/BaO/Al 2O 3 catalysts. The model is based on a previous model for NO x storage under sulfur-free conditions. In the present model the storage of NO x is allowed on two storage sites, one for complete NO x uptake and one for a slower NO x sorption. The adsorption of SO x is allowed on both of these NO x storage sites and on one additional site which represent bulk storage. The present model is built-up of six sub-models: (i) NO x storage under sulfur-free conditions; (ii) SO 2 storage on NO x storage sites; (iii) SO 2 oxidation; (iv) SO 3 storage on bulk sites; (v) SO 2 interaction with platinum in the presence of H 2; (vi) oxidation of accumulated sulfur compounds on platinum by NO 2. Data from flow reactor experiments are used in the implementation of the model. The model is tested for simulation of experiments for NO x storage before exposure to sulfur and after pre-treatments either with SO 2 + O 2 or SO 2 + H 2. The simulations show that the model is able to describe the main features observed experimentally. 相似文献
5.
In this paper, the effect of CO 2 and H 2O on NO x storage and reduction over a Pt–Ba/γ-Al 2O 3 (1 wt.% Pt and 30 wt.% Ba) catalyst is shown. The experimental results reveal that in the presence of CO 2 and H 2O, NO x is stored on BaCO 3 sites only. Moreover, H 2O inhibits the NO oxidation capability of the catalyst and no NO 2 formation is observed. Only 16% of the total barium is utilized in NO storage. The rich phase shows 95% selectivity towards N 2 as well as complete regeneration of stored NO. In the presence of CO 2, NO is oxidized into NO 2 and more NO x is stored as in the presence of H 2O, resulting in 30% barium utilization. Bulk barium sites are inactive in NO x trapping in the presence of CO 2·NH 3 formation is seen in the rich phase and the selectivity towards N 2 is 83%. Ba(NO 3) 2 is always completely regenerated during the subsequent rich phase. In the absence of CO 2 and H 2O, both surface and bulk barium sites are active in NO x storage. As lean/rich cycling proceeds, the selectivity towards N 2 in the rich phase decreases from 82% to 47% and the N balance for successive lean/rich cycles shows incomplete regeneration of the catalyst. This incomplete regeneration along with a 40% decrease in the Pt dispersion and BET surface area, explains the observed decrease in NO x storage. 相似文献
6.
The reduction of NO x by hydrogen under lean burn conditions over Pt/Al 2O 3 is strongly poisoned by carbon monoxide. This is due to the strong adsorption and subsequent high coverage of CO, which significantly increases the temperature required to initiate the reaction. Even relatively small concentrations of CO dramatically reduce the maximum NO x conversions achievable. In contrast, the presence of CO has a pronounced promoting influence in the case of Pd/Al 2O 3. In this case, although pure H 2 and pure CO are ineffective for NO x reduction under lean burn conditions, H 2/CO mixtures are very effective. With a realistic (1:3) H 2:CO ratio, typical of actual exhaust gas, Pd/Al 2O 3 is significantly more active than Pt/Al 2O 3, delivering 45% NO x conversion at 160 °C, compared to >15% for Pt/Al 2O 3 under identical conditions. The nature of the support is also critically important, with Pd/Al 2O 3 being much more active than Pd/SiO 2. Possible mechanisms for the improved performance of Pd/Al 2O 3 in the presence of H 2+CO are discussed. 相似文献
7.
The presence of sulfur in automotive exhaust is known to be detrimental to lean-NO x traps as SO 2 is oxidized to SO 3 that competes with NO 2 for sites on the trap and is difficult to remove. In this study the effect of adding Cu to the prototypical Pt–BaO/γ-Al 2O 3 formulation on the system's tolerance for sulfur was investigated. It was found that in the absence of sulfur, Cu decreases the performance in terms of both NO x storage capacity and reduction of NO x to N 2 during regeneration. In the presence of SO 2, Cu provides a significant improvement in sulfur tolerance so that, after sulfur exposure, the storage capacity of the Cu-modified material can exceed that of the baseline material. The sulfur tolerance afforded by Cu is attributed to a moderation in the activity for SO 2 oxidation resulting from the formation of a Pt–Cu bimetallic phase. The propensity for NO oxidation is also modified, but to a lesser effect. Evidence for the bimetallic phase is provided by temperature-programmed reduction (TPR) and electron microscopy. The impact of SO 2 on the Cu-modified material is greater during the regenerative reduction cycle. In this case, the results suggest that sulfur blocks Pt and possibly Cu sites and that the sulfur is not removed by oxidation during the subsequent storage cycle. Hence, activity lost during the reduction cycle is not restored. In contrast, sulfur that blocks Pt sites on the baseline material during the reduction cycle is subsequently oxidized and desorbs from the Pt, restoring the activity. However, some of the resulting SO 3 reacts with the BaO to form BaSO 4, and there is a partial loss of storage capacity. 相似文献
8.
This study addresses the catalytic reaction of NO x and soot into N 2 and CO 2 under O 2-rich conditions. To elucidate the mechanism of the soot/NO x/O 2 reaction and particularly the role of the catalyst -Fe 2O 3 is used as model sample. Furthermore, a series of examinations is also made with pure soot for reference purposes. Temperature programmed oxidation and transient experiments in which the soot/O 2 and soot/NO reaction are temporally separated show that the NO reduction occurs on the soot surface without direct participation of the Fe 2O 3 catalyst. The first reaction step is the formation of CC(O) groups that is mainly associated with the attack of oxygen on the soot surface. The decomposition of these complexes leads to active carbon sites on which NO is adsorbed. Furthermore, the oxidation of soot by oxygen provides a specific configuration of active carbon sites with suitable atomic orbital orientation that enables the chemisorption and dissociation of NO as well as the recombination of two adjacent N atoms to evolve N 2. Moreover, carbothermal reaction, high resolution transmission electron microscopy and isotopic studies result in a mechanistic model that describes the role of the Fe 2O 3 catalyst. This model includes the dissociative adsorption of O 2 on the iron oxide, surface migration of the oxygen to the contact points of soot and catalyst and then final transfer of O to the soot. Moreover, our experimental data suggest that the contact between both solids is maintained up to high conversion levels thus resulting in continuous oxygen transfer from catalyst to soot. As no coordinative interaction of soot and Fe 2O 3 catalyst is evidenced by diffuse reflectance infrared Fourier transform spectroscopy a van der Waals type interaction is supposed. 相似文献
9.
NO x sorption and reduction capacities of 12-tungstophosphoric acid hexahydrate (H 3PW 12O 40·6H 2O, HPW) were measured under representative alternating conditions of lean and rich exhaust-type gas mixture. Under lean conditions, the sorption of NO x is large and is equivalent to 37 mg of NO x/g HPW. Although a part of these NO x remains unreduced, HPW is able to reduce some of the NO x to produce N 2 by a reaction between the sorbed NO 2 and hydrocarbon (HC), but this process is slow. The addition of 1% Pt affects strongly the chemical behaviour occurring during the course of a rich operation. The NO desorption observed at the beginning of the rich phase is strongly accelerated. The direct correlation between NO 2 consumption and CO 2 production shows that the principal pathway is the reaction CO+NO 2→CO 2+NO. In a mixture of reducing gas (CO, HC, H 2), the competition is strongly in favour of CO though in its absence the reaction observed was the hydrogenation of propene to propane. 相似文献
10.
The sulphur tolerance and thermal stability of a 2 wt% Ag/γ-Al 2O 3 catalyst was investigated for the H 2-promoted SCR of NO x with octane and toluene. The aged catalyst was characterised by XRD and EXAFS analysis. It was found that the effect of ageing was a function of the gas mix and temperature of ageing. At high temperatures (800 °C) the catalyst deactivated regardless of the reaction mix. EXAFS analysis showed that this was associated with the Ag particles on the surface of the catalyst becoming more ordered. At 600 and 700 °C, the deactivating effect of ageing was much less pronounced for the catalyst in the H 2-promoted octane-SCR reaction and ageing at 600 °C resulted in an enhancement in activity for the reaction in the absence of H 2. For the toluene + H 2-SCR reaction the catalyst deactivated at each ageing temperature. The effect of addition of low levels of sulphur (1 ppm SO 2) to the feed was very much dependent on the reaction temperature. There was little deactivation of the catalyst at low temperatures (≤235 °C), severe deactivation at intermediate temperatures (305 and 400 °C) and activation of the catalyst at high temperatures (>500 °C). The results can be explained by the activity of the catalyst for the oxidation of SO 2 to SO 3 and the relative stability of silver and aluminium sulphates. The catalyst could be almost fully regenerated by a combination of heating and the presence of hydrogen in the regeneration mix. The catalyst could not be regenerated in the absence of hydrogen. 相似文献
11.
A systematic mechanistic study of NO storage and reduction over Pt/Al 2O 3 and Pt/BaO/Al 2O 3 is carried out using Temporal Analysis of Products (TAP). NO pulse and NO/H 2 pump-probe experiments at 350 °C on pre-reduced, pre-oxidized, and pre-nitrated catalysts reveal the complex interplay between storage and reduction chemistries and the importance of the Pt/Ba coupling. NO pulsing experiments on both catalysts show that NO decomposes to major product N 2 on clean Pt but the rate declines as oxygen accumulates on the Pt. The storage of NO over Pt/BaO/Al 2O 3 is an order of magnitude higher than on Pt/Al 2O 3 showing participation of Ba in the storage even in the absence of gas phase O 2. Either oxygen spillover or transient NO oxidation to NO 2 is postulated as the first steps for NO storage on Pt/BaO/Al 2O 3. The storage on Pt/Ba/Al 2O 3 commences as soon as Pt–O species are formed. Post-storage H 2 reduction provides evidence that a fraction of NO is not stored in close proximity to Pt and is more difficult to reduce. A closely coupled Pt/Ba interfacial process is corroborated by NO/H 2 pump-probe experiments. NO conversion to N 2 by decomposition is sustained on clean Pt using excess H 2 pump-probe feeds. With excess NO pump-probe feeds NO is converted to N 2 and N 2O via the sequence of barium nitrate and NO decomposition. Pump-probe experiments with pre-oxidized or pre-nitrated catalyst show that N 2 production occurs by the decomposition of NO supplied in a NO pulse or from the decomposition of NOx stored on the Ba. The transient evolution of the two pathways depends on the extent of pre-nitration and the NO/H 2 feed ratio. 相似文献
12.
Pt– xMo/γ-Al 2O 3 catalysts of different molybdenum loading (2–20 wt.%) and with 1 wt.% of platinum were prepared by successive wet impregnation after intermediate calcination. The structure, morphology and surface were characterized by various methods. The DRS results indicate the presence of octahedral Mo 6+ and tetrahedral Mo 6+ phases. It also evidences the presence of polymeric MoO x species, responsible for the formation of a well dispersed surface sublayer and bulk MoO 3 crystalline phase. XPS results after reduction and passivation of the 1Pt and 1Pt2Mo revealed the presence of residual chlorine, in the form of surface species such as [Pt(OH) xCl y] s and [PtO xCl y] sfavoring the formation of well dispersed platinum particles. The TPD and FTIR results are consistent with the existence of new active sites of Pt in the presence of molybdenum loading. For low Mo content there is a H 2 spillover effect. These results confirm the decoration model of Pt encapsulation by partially reduced Mo species as well as H 2 storage and backspillover due to the generation of a bronze compound. 相似文献
13.
A series of 1 wt.%Pt/ xBa/Support (Support = Al 2O 3, SiO 2, Al 2O 3-5.5 wt.%SiO 2 and Ce 0.7Zr 0.3O 2, x = 5–30 wt.% BaO) catalysts was investigated regarding the influence of the support oxide on Ba properties for the rapid NO x trapping (100 s). Catalysts were treated at 700 °C under wet oxidizing atmosphere. The nature of the support oxide and the Ba loading influenced the Pt–Ba proximity, the Ba dispersion and then the surface basicity of the catalysts estimated by CO 2-TPD. At high temperature (400 °C) in the absence of CO 2 and H 2O, the NO x storage capacity increased with the catalyst basicity: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr. Addition of CO 2 decreased catalyst performances. The inhibiting effect of CO 2 on the NO x uptake increased generally with both the catalyst basicity and the storage temperature. Water negatively affected the NO x storage capacity, this effect being higher on alumina containing catalysts than on ceria–zirconia samples. When both CO 2 and H 2O were present in the inlet gas, a cumulative effect was observed at low temperatures (200 °C and 300 °C) whereas mainly CO 2 was responsible for the loss of NO x storage capacity at 400 °C. Finally, under realistic conditions (H 2O and CO 2) the Pt/20Ba/Al5.5Si catalyst showed the best performances for the rapid NO x uptake in the 200–400 °C temperature range. It resulted mainly from: (i) enhanced dispersions of platinum and barium on the alumina–silica support, (ii) a high Pt–Ba proximity and (iii) a low basicity of the catalyst which limits the CO 2 competition for the storage sites. 相似文献
14.
The performance of Ir/γ-Al 2O 3 catalyst for the decomposition of high concentration hydrogen peroxide was investigated in a monopropellant thruster. The changes of ignition delay ( t0), chamber pressure ( Pc) and catalyst bed temperature ( Tc) with the numbers of startup–shutdown cycles were proved to be effective indicators of catalyst bed efficiency. The fresh catalyst and the deactivated catalyst were characterized with H 2-TPR, XRD and XPS. It was found that catalyst oxidation and surface Sn poisoning are the major reasons of catalyst deactivation. 相似文献
15.
The role of ozone was studied for two different configurations combining non-thermal plasma (NTP) and heterogeneous catalysis, namely the use of a gas phase plasma with subsequent exposure of the effluent to a catalyst in a packed-bed reactor (post-plasma treatment) and the placement of the catalyst directly in the discharge zone (in-plasma catalysis). Non-porous and porous alumina and silica were deployed as model catalysts. The oxidation of immobilised hydrocarbons, toluene as a volatile organic compound and CO as an inorganic pollutant were studied in both operational modes. While conversion and selectivity of hydrocarbon oxidation in the case of catalytic post-plasma treatment can be fully explained by the catalytic decomposition of O3 on γ-Al2O3, the conversion processes for in-plasma catalysis are more complex and significant oxidation was also measured for the other three materials (-Al2O3, quartz and silica gel). It became obvious that additional synergetic effects can be utilised in the case of in-plasma catalysis due to short-lived species formed in the NTP. The capability of porous alumina for ozone decomposition was found to be correlated with its activity for oxidation of carbon-containing agents. It could be clearly shown that the reaction product CO2 poisons the catalytic sites at the γ-Al2O3 surface. The catalytic activity for O3 decomposition can be partially re-established by NTP treatment. However, for practical purposes the additional reaction pathways provided by in-plasma catalytic processes are essential for satisfactory conversion and selectivity. 相似文献
16.
Selective catalytic reduction of NO x by C 3H 6 in the presence of H 2 over Ag/Al 2O 3 was investigated using in situ DRIFTS and GC–MS measurements. The addition of H 2 promoted the partial oxidation of C 3H 6 to enolic species, the formation of –NCO and the reactions of enolic species and –NCO with NO x on Ag/Al 2O 3 surface at low temperatures. Based on the results, we proposed reaction mechanism to explain the promotional effect of H 2 on the SCR of NO x by C 3H 6 over Ag/Al 2O 3 catalyst. 相似文献
17.
CeO 2–ZrO 2–La 2O 3 (CZL) mixed oxides were prepared by citric acid sol–gel method. The as-received gel was calcined at 500, 700, 900 and 1050 °C to obtain the so-called C5, C7, C9 and CK, respectively. The C5, C7 and C9 powders were impregnated with H 2PtCl 6 and then calcined at 500 °C to prepare P5C5, P5C7 and P5C9, respectively. The impregnated CK powders were calcined at 500, 700 and 900 °C to prepare P5CK, P7CK and P9CK, respectively. The XRD and XPS analyses show that the surface distribution of Pt is evidently influenced by the structural and textural properties of the support. The CO adsorption followed by FTIR reveals that the dispersion and the chemisorption sites of Pt are reduced as the calcination temperature of CZL support increases. The chemisorption ability of the CK samples is even completely deactivated. The encapsulation mechanism, which has been applied to explain the so-called strong metal–support interaction (SMSI) after reductive treatment, is introduced here to demonstrate the abnormal observations though the samples were prepared in oxidative atmosphere. The HRTEM results also confirm this explanation. The effects of oxygen vacancies, the chemisorption sites on the Pt surface and Pt/Ce interfacial sites on the three-way catalytic activities are discussed. 相似文献
18.
The reduction of NO under cyclic “lean”/“rich” conditions was examined over two model 1 wt.% Pt/20 wt.% BaO/Al 2O 3 and 1 wt.% Pd/20 wt.% BaO/Al 2O 3 NO x storage reduction (NSR) catalysts. At temperatures between 250 and 350 °C, the Pd/BaO/Al 2O 3 catalyst exhibits higher overall NO x reduction activity. Limited amounts of N 2O were formed over both catalysts. Identical cyclic studies conducted with non-BaO-containing 1 wt.% Pt/Al 2O 3 and Pd/Al 2O 3 catalysts demonstrate that under these conditions Pd exhibits a higher activity for the oxidation of both propylene and NO. Furthermore, in situ FTIR studies conducted under identical conditions suggest the formation of higher amounts of surface nitrite species on Pd/BaO/Al 2O 3. The IR results indicate that this species is substantially more active towards reaction with propylene. Moreover, its formation and reduction appear to represent the main pathway for the storage and reduction of NO under the conditions examined. Consequently, the higher activity of Pd can be attributed to its higher oxidation activity, leading both to a higher storage capacity ( i.e., higher concentration of surface nitrites under “lean” conditions) and a higher reduction activity ( i.e., higher concentration of partially oxidized active propylene species under “rich” conditions). The performance of Pt and Pd is nearly identical at temperatures above 375 °C. 相似文献
19.
The reduction of NO by propene in the presence of excess oxygen over mechanical mixtures of Au/Al 2O 3 with a bulk oxide has been investigated. The oxides studied were: Co 3O 4, Mn 2O 3, Cr 2O 3, CuO, Fe 2O 3, NiO, CeO 2, SnO 2, ZnO and V 2O 5. Under lean C 3H 6-SCR conditions, these oxides (with the exception of SnO 2) convert selectively NO to NO 2. When mechanically mixed with Au/Al 2O 3, the Mn 2O 3 and Co 3O 4 oxides and, to a much greater extent, CeO 2 act synergistically with this catalyst greatly enhancing its SCR performance. It was found that their synergistic action is not straightforwardly related to their activity for NO oxidation to NO 2. The exhibited catalytic synergy may be due to the operation of either remote control or a bifunctional mechanism. In the later case, the key intermediate must be a short-lived compound and not the NO 2 molecule in gas-phase. 相似文献
20.
The activity of several catalysts are studied in the soot combustion reaction using air and NO/air as oxidising agents. Over Al 2O 3-supported catalysts NO (g) is a promoter for the combustion reaction with the extent of promotion depending on the Na loading. Over these catalysts SO 42− poisons this promotion by preventing NO oxidation through a site blocking mechanism. SiO 2 is unable to adsorb NO or catalyse its oxidation and over SiO 2-supported Na catalysts NO (g) inhibits the combustion reaction. This is ascribed to a competition between NO and O 2. Over Fe-ZSM-5 catalysts the presence of a NO x trapping component does not increase the combustion of soot in the presence of NO (g) and it is proposed that this previously reported effect is only seen under continuous NO x trap operation as NO 2 is periodically released during regeneration and thus available for soot combustion. Experiments during which the [NO] (g) is varied show that CO, rather than an adsorbed carbonyl-like intermediate, is formed upon reaction between NO 2 (the proposed oxygen carrier) and soot. 相似文献
|