首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effect of heat‐moisture treatment (HMT) on the properties of pinhão starches under different moisture and heat conditions was investigated. The starches were adjusted to 15, 20 and 25% moisture levels and heated to 100, 110 and 120°C for 1 h. The X‐ray diffractograms, swelling power, solubility, gel hardness, pasting properties and thermal properties of the native and HMT pinhão starches were evaluated. Compared to native starch, there was an increase in the X‐ray intensity and gel hardness of HMT starches, with the exception of the 25% moisture‐treated and 120°C heat‐treated starch. HMT reduced the swelling power and solubility of the pinhão starches when compared to native starch. There was an increase in the pasting temperature, final viscosity and setback and a decrease in the peak viscosity and breakdown of HMT pinhão starches compared to native starch. HMT increases the gelatinisation temperature of native pinhão starch and reduces gelatinisation enthalpy.  相似文献   

2.
Using non-conventional starch can benefit the industry since it can present different properties. It also can lead to new properties upon physical modification, which improves its derivate film properties. Therefore, the aim of this work is to evaluate the heat–moisture treatment (HMT) on pinhão starch and its effectiveness in film properties. After isolation using water as a solvent, the pinhão starch is treated by HMT for 16 h at 110 °C. Native and HMTed starches are used to produce biodegradable films. Pinhão starch and starch films chemical and physical properties are properly characterized. The HMT causes some changes in short-range ordered structures, reduces the relative crystallinity, and shifts the pinhão starch from C-type to A-type. Also, HMT decreases the peak viscosity and the breakdown, and improves thermal stability. These starch changes upon HMT reduces water vapor permeability, increases tensile strength, and elongation at the break of pinhão starch films. Desirable changes in starch and film properties are achieved by physically modifying pinhão starch using HMT, which is a promising alternative to chemical modifications.  相似文献   

3.
Sago starch was modified by osmotic‐pressure treatment (OPT) and heat‐moisture treatment (HMT) and physicochemical characteristics were compared. In OPT, sago starch was suspended in saturated sodium sulfate solution and heated for 1 h at 100, 110 and 120°C, corresponding to a calculated osmotic pressure of 32,728, 33,640 and 34,552 kPa (assuming sodium sulfate dissociates completely), respectively, and in HMT, sago starch with 20% moisture content was used. Change of X‐ray diffraction pattern from C‐type to A‐type was obtained for OPT and HMT starch at 110°C and 120 °C, respectively. RVA viscograms of both OPT and HMT starch exhibited a decrease of peak and breakdown viscosity but increase of final viscosity and pasting temperature. Onset (To), peak (Tp), and conclusion temperature (Tc) of gelatinization of both OPT and HMT starch increased significantly with increase of treatment temperature. Biphasic broadening of Tp was observed for HMT starch indicating an inhomogeneous heat transfer during HMT. The observed narrow peaks of DSC curves indicated better homogeneity of OPT. These properties suggest that OPT starch is more suitable for large‐scale production.  相似文献   

4.
The pinhão seeds (Araucaria angustifolia), are composed of 34% of starch and very low fractions of protein, lipids and phenolic compounds. This composition is favorable to obtain a stable, white in color and odorless starch, useful in the food industry. The isolated starch is constituted predominantly of small‐sized round granules (10–25 μm), rather than oval ones. Compared to corn starch, pinhão starch has a lower temperature and enthalpy of gelatinization. Retrogradation occurs to a lower extent in pinhão starch, due to its lower amylose content (∼25%). The pasting profile of pinhão starch showed a higher consistency than that of corn starch, with lower temperature in the peak of maximum viscosity. The higher swelling and solubility values of pinhão starch, in conjunction with the higher storage modulus (G') suggest new different applications of this novel starch. The low protein content of the starch granule favors applications like production of glucose and fructose syrups. The simple method of extraction and the high yield of starch from pinhão seed might be attractive not only for pilot‐plant but also for commercial‐scale production.  相似文献   

5.
Beta‐carotene was microencapsulated by freeze‐drying using native pinhão starch, hydrolysed pinhão starch 6 dextrose equivalent (DE), hydrolysed pinhão starch 12 DE and the mixture of these materials with gelatin as coating material. The purpose of this research was to produce and characterize these microcapsules. The capsules’ efficiency, surface content, moisture, morphology, solubility, particle size and glass transition temperature were analysed. The hydrolysed pinhão starch 12 DE showed the highest total β‐carotene content and the lowest surface β‐carotene content, unlike the native starch. Using scanning electron microscopy, it was observed that all microcapsules presented undefined shapes. The samples with gelatin had wider particle size distribution, higher diameters, lower solubility and higher glass transition temperature when compared with other the samples. Results obtained suggest that the modified pinhão starch can be considered as potential wall material for encapsulation of β‐carotene.  相似文献   

6.
The effects of heat–moisture treatment (HMT; moisture content of 25%, at 100°C for 24 h) on starch chain distribution and unit chain distribution of amylopectin in normal rice, waxy rice, normal corn, waxy corn, normal potato, and waxy potato starches were investigated. After HMT, starch chain distribution (amylose and amylopectin responses) of waxy corn and potato starches were identical to those of untreated starches, whereas the chromatographic response of waxy rice starch showed a slight decrease, but with a slight increase in peak tailing. This result indicated that HMT had no (or very limited) effect on the degradation of amylopectins. Analysis of unit chain distribution of amylopectins revealed that waxy characteristics affected the molecular structure of amylopectin in untreated starches, i.e., the CL of normal‐type starches was greater than that of waxy‐type starches. After HMT, the CL and unit chain distribution of all starches were no different than those of untreated starches. The results implied that changes in the physico‐chemical properties of HMT starches would be due to other phenomena rather than the degradation of amylopectin molecular structure. However, the thermal degradation of amylopectin molecules of waxy starches could occur by HMT at higher treatment temperatures (120 and 140°C).  相似文献   

7.
This study investigated the effects of heat‐moisture treatment (HMT) on the resistant starch content and thermal, morphological, and textural properties of rice starches with high‐, medium‐ and low‐amylose content. The starches were adjusted to 15, 20 and 25% moisture levels and heated at 110°C for 1 h. The HMT increased the resistant starch content in all of the rice starches. HMT increased the onset temperature and the gelatinisation temperature range (Tfinish–Tonset) and decreased the enthalpy of gelatinisation of rice starches with different amylose contents. This reduction increased with the increase in the moisture content of HMT. The morphology of rice starch granules was altered with the HMT; the granules presented more agglomerated surface. The HMT affected the textural parameters of rice starches; the high‐ and low‐amylose rice starches subjected to 15 and 20% HMT possessed higher gel hardness.  相似文献   

8.
A new method of physical modification of starch in the presence of high concentrated salt solution is presented, called “Osmotic Pressure Treatment” (OPT). OPT was introduced in order to produce the same physically modified products as obtained by conventional heat‐moisture treatment (HMT) of starch. Potato starch was selected for the comparative study of the two methods. For the OPT method, potato starch was suspended in a saturated solution of sodium sulfate and heated in an autoclave at 105°C and 120°C ,which corresponded to the calculated osmotic pressures of 328 and 341 atm (332 and 345 bar, respectively) (assuming sodium sulfate dissociates completely) for 15, 30 and 60 min, respectively. For the HMT method, starch with 20% moisture content was placed in a Duran bottle, then the same heat treatment method in the autoclave was applied. Light and scanning electron microscopy (SEM) showed that OPT of starch changed the shape of the starch granules to a folded structure, while the starches remained unchanged after HMT. The RVA viscogram for the OPT starch exhibited a decrease in the peak viscosity without a breakdown and an increase of the pasting temperature when increasing the temperature and time, which was in an agreement with the viscosity patterns for the HMT starches. X‐ray diffraction patterns were altered from B to A+B for the HMT and from B to A type for the OPT starch when treated at 120°C. After OPT, the gelatinization temperatures (To, Tp, and Tc) of the starch increased significantly with increasing temperature and time, whereas only the Tc of starch increases after HMT. The biphasic broadening of the peaks (high TcTo) can be explained by an inhomogeneous heat transfer during HMT. Narrow peaks in the DSC curve can be an indication for a better homogeneity of the OPT samples. However, both methods provide a similar decrease in the gelatinization enthalpy (ΔH). The amylose‐amylopectin ratio calculated from the HPSEC patterns was strongly increased for HMT starches at 105°C for 60 min and 120°C for 30 min and decreased after treatment at 120°C for 60 min. For OPT starches the ratio was strongly increased at 120°C for 15 min and decreased after prolong heating. The OPT provides a uniform heat distribution in the starch suspension. This allows the modified starch to be produced on a larger scale.  相似文献   

9.
Resistant starch (RS) can be generated through heat moisture treatment (HMT). The HMT was conducted by modifying starch using different ratio of moisture content, high temperature and heating time. A number of studies showed that the effects of HMT on RS contents in cereals, pulses, tubers and fruits were inconsistent. This study aimed to analyse the impact of HMT on RS level in various carbohydrate sources through a meta-analysis approach. Study selection was conducted with the PRISMA method. There were 21 relevant studies and 67 data used for meta-analysis. The database was analysed by using Hedges’ d. The results showed that there was a significant impact of HMT on RS level of cereals, especially wheat. The highest increase in RS levels for various carbohydrate sources in starch was influenced by the interaction of treatment between water content at 15 ≤ x < 25%, heating time at 0.25 < x ≤ 6 h and temperature at 120 ≤ x ≤ 130 °C.  相似文献   

10.
Brazilian pine seeds (pinhão) are gluten‐free products derived from Araucaria angustifolia. The commercialization of these seeds is essentially associated with a low level of industrialization. In this context, extrusion cooking is a potential alternative for preparing extrudates of pinhão as a food product, which can be easily digested and is ready for human consumption. Brazilian pine seeds flour was processed in a single‐screw extruder following a central composite rotatable design. Three factors (independent parameters) were considered: moisture content (14 to 22 g/100 g), screw speed (100 to 250 rpm), and temperature in the 3rd heating zone (120 to 200 °C). The structural characteristics, in vitro digestibility and sensory acceptance were also evaluated. The resistant starch contents is almost reduced to zero after extrusion cooking while the slowly digestible starch content is increased. An increase in moisture positively affected the hardness and the luminosity (L*), although it negatively affected the volumetric expansion index, crispness, and color parameters (a*, b*, and ΔE). The experimental conditions of this study allowed the production of expanded extrudates from Brazilian pine seeds with good expansion, texture properties, and acceptance qualities. Thus, extrusion cooking was found to be a potential method for the industrialization of Brazilian pine seeds as a food product.  相似文献   

11.
The seeds of Araucaria angustifolia, named pinhão, are consumed in the south and southeast of Brazil. They are big in size and have high nutritious value. The literature about technological aspects of pinhão is very scarce and there are no reports about moisture sorption models. In this work, moisture desorption isotherms of raw pinhão were determined at 15, 25, 30 and 40 °C. Results show that temperature has little effect on the sorption behaviour and the Chirife model was found to best represent the experimental data. The isosteric heat of sorption (differential enthalpy) was calculated through direct use of moisture desorption isotherm by applying the Clausius‐Clapeyron equation. The differential enthalpy of desorption decreased with increasing moisture content. The enthalpy–entropy compensation theory was applied to desorption isotherms and plots of differential enthalpy vs. differential entropy for pinhão provided the isokinetic temperature, indicating an enthalpy‐controlled desorption process.  相似文献   

12.
Physicochemical properties of pressure moisture treated (PMT, 550 MPa, 10 min) and heat moisture treated (HMT, 100 °C, 10 h) starches were investigated. Effects of PMT and HMT were different depending on starch type. PMT starches showed dramatic changes in moisture sorption isotherm, pasting properties, thermal characteristics, solubility and swelling power (at 90 °C), and in vitro digestibility. The most dramatic difference between PMT and HMT starches was amylopectin melting transition, i.e., broadening in PMT and shift to high temperature in HMT starches. Moreover, B- and C-type starches revealed the more increase in amylopectin melting enthalpy than A-type starch. Both PMT and HMT did not increase the crystallinity but reorganized the amorphous area to compact, resulting in lower rapidly digestible starch and higher slowly digestible starch than those of native starches. Consequently, PMT changed the digestibility and physicochemical properties of starches with different modes of action compared with HMT.  相似文献   

13.
Pea, lentil and navy bean starches were annealed at 50 °C (70% moisture) for 24 h and heat-moisture treated at 120 °C (30% moisture) for 24 h. These starches were also modified by a combination of annealing (ANN) and heat-moisture treatment (HMT). The impact of single and dual modifications (ANN–HMT and HMT–ANN) on the crystalline structure, thermal properties, and the amounts of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) were investigated. Birefringence remained unchanged on ANN but decreased on HMT. Granular swelling and amylose leaching decreased on ANN and HMT. Relative crystallinity, gelatinization enthalpy, and short-range order on the granule surface increased on ANN but decreased on HMT. Gelatinization transition temperatures increased on ANN and HMT. Gelatinization temperature range decreased and increased on ANN and HMT, respectively. ANN and HMT increased SDS and decreased RS levels in all starches. However, RDS levels increased on ANN and HMT in pea and lentil starches but decreased in navy bean starch. In gelatinized starches, ANN and HMT decreased RDS level and increased SDS and RS levels. Changes to crystalline structure, thermal properties and amounts of RDS, SDS, and RS were modified further on ANN–HMT and HMT–ANN.  相似文献   

14.
Cassava, sweet potato and arrowroot starches have been subjected to heat‐moisture treatment (HMT) under different conditions using a response surface design of the variables. A comparative study was performed on the pasting properties, swelling behaviour and the gelatinization properties of the modified starches and also on the rheological and textural properties of their pastes. X‐ray diffraction studies have shown that cassava starch exhibited a slight decrease in crystallinity, whereas sweet potato and arrowroot starches showed an increase in crystallinity after HMT at 120ºC for 14 h with 20% moisture. The swelling volume was reduced and the solubility was enhanced for all three starches after HMT, but both effects were more pronounced in the case of arrowroot starch. The decrease in paste clarity of the starch after HMT was higher in the case of cassava and sweet potato starches. Viscosity studies showed that the peak viscosity of all three starches decreased after HMT, but the paste stability increased as seen from the reduced breakdown ratio and setback viscosity. Studies on rheological properties have shown that storage and loss moduli were higher for the starches heat‐moisture treated at higher moisture and lower temperature levels than the corresponding native starches. Storage of the gel at ‐20ºC resulted in a significant increase in storage modulus for all the three starches. All the textural parameters of the gels were altered after the treatment which depended on the nature of the starch and also the treatment condition.  相似文献   

15.
Mung bean starch was subjected to a range of heat-moisture treatments (HMT) based on different moisture contents (15%, 20%, 25%, 30%, and 35%) all heated at 120 °C for 12 h. The impact on the yields of resistant starch (RS), and the microstructure, physicochemical and functional properties of RS was investigated. Compared to raw starch, the RS content of HMT starch increased significantly, with the starch treated at 20% moisture having the highest RS content. After HMT, birefringence remained at the periphery of the granules and was absent at the center of some granules. The shape and integrity of HMT starch granules did not change but concavity was observed under scanning electronic microscopy. Apparent amylose contents of HMT starch increased and the HMT starch was dominated by high molecular weight fraction. Both the native and HMT starches showed A-type X-ray diffraction pattern. Relative crystallinity increased after HMT. The gelatinization temperatures (To, Tp, and Tc), gelatinization temperature range (Tc–To) and enthalpies of gelatinization (ΔH) increased significantly in HMT starch compared to native starch. The solubility increased but swelling power decreased in HMT starches. This study clearly shows that the HMT exhibited thermal stability and resistance to enzymatic hydrolysis owing to stronger interactions of starch chains in granule.  相似文献   

16.
The objective of this research was to investigate the effect of heating rate at different moisture contents on starch retrogradation and gelatinization process. Starch retrogradation was not influenced by either moisture content (water/starch ratio of 0.7 or 2.0) or heating rate (5°C/min, 20°C/min, or 40°C/min). In order to further understand the effects of heating rate on starch–water interactions, starch suspensions at a water/starch ratio ranging from 0.7 to 3.0 were heated at 5, 15, or 25°C/min by using a DSC to different final temperatures and rescanned. The deconvoluted G and M1 endotherms and the corresponding additional unfrozen water (AUW) were determined. The results showed that the G and M1 endotherms merged at higher heating rates and at higher moisture contents as expected. A significant interaction was observed between moisture content and heating rate. The results suggest that the gelatinization process is governed by moisture content at the lower heating rate (5°C/min) and by heating rate at the higher heating rates (15 or 25°C/min). Results from the AUW data suggest that the M1 component of gelatinization dominated at moisture content below water/starch ratio of 1.5 and at 5°C/min heating rate. However, at moisture contents above water/starch ratio 1.0, an interaction was observed between moisture content and heating rate. The data suggest that at higher moisture content (>1.5 water/starch ratio) and at higher heating rate (≥15°C/min), there is still a kinetic limitation to the complete melting of the M1 endotherm.  相似文献   

17.
The aim of this work was to study the effects of heat‐moisture treatment (27% moisture, 100°C, 16 h) and of enzymatic digestion (alpha‐amylase and glucoamylase) on the properties of sweet potato (SP), Peruvian carrot (PC) and ginger (G) starches. The structural modification with heat‐moisture treatment (HMT) affected crystallinity, enzyme susceptibility and viscosity profile. The changes in PC starch were the most pronounced, with a strong decrease of relative crystallinity (from 0.31 to 0.21) and a shift of X‐ray pattern from B‐ to A‐type. HMT of SP and G starch did not change the X‐ray pattern (A‐type). The relative crystallinity of these starches changed only slightly, from 0.32 to 0.29 (SP) and from 0.33 to 0.32 (G). The extent of these structural changes (PC > SP > G) altered the susceptibility of the starches to enzymatic attack, but not in same order (PC > G > SP). HMT increased the starches digestion, probably due to rearrangement of disrupted crystallites, increasing accessible areas to attack of enzymes. The viscosity profiles and values changed significantly with HMT, resulting in higher pasting temperatures, decrease of viscosity values and no breakdown, i.e., stability at high temperatures and shear rates. Changes in pasting properties appeared to be more significant for PC and SP starch, whereas the changes for G starch were small. Setback was minimized following HMT in SP and G starches.  相似文献   

18.
Cassava starch was debranched using pullulanase and the linear glucans recrystallized by incubation at 60°C or by temperature cycling at 120/60°C, and further subjected to heat‐moisture treatment (HMT). Resistant starch (RS III) contents increased from 21.4 g/100 g in the debranched starch (DS) to 67.3 g/100 g in the debranched starch incubated at 60°C (DRS) and 47.8 g/100 g in the debranched starch subjected to temperature cycling (DCS), and further to 84.8 g/100 g and 88.4% g/100 g in HMT‐DRS and HMT‐DCS, respectively. Total crystallinity varied between 31.4‐59.8% and the crystalline type was C in DS and DRS and A in DCS, HMT‐DRS and HMT‐DCS. The melting properties were characterized by broad endotherms, but the exact melting region and enthalpy were dependent on recrystallization method. The main endothermic peaks of DS and DRS occurred at 103.9 and 109.8°C, respectively, whereas DCS exhibited split endotherms at 113.6 and 138.1°C. Heat‐moisture treatment broadened the endotherms and increased their enthalpies. Scanning electron micrographs revealed surface topography differences related to size and aggregation of individual crystalline bodies.  相似文献   

19.
BACKGROUND: The seeds of Araucaria angustifolia, namely pinhão, are consumed in south and southeast Brazil as flour or baked. There is relatively little information about the chemical composition and nutritional value of the seed and its flour. RESULTS: Pinhão flour was obtained by drying at constant temperature of 50 °C (PF50) or 80 °C (PF80) in a circulating air drier for 16 h, and evaluated as a feed additive for growing rats. Wistar rats were fed five experimental diets (n = 6 rats per diet) containing different protein sources: casein (diet CAS), casein supplemented with 20% (w/w) flour PF50 or PF80 (diets PF50 and PF80), casein supplemented with 20% pinhão without heat treatment (diet NPF), and a non‐protein group (diet APROT). Values for weight gain, feed ingest, protein efficiency ratio (PER) and net protein ratio (NPR) were similar for diets CAS and PF80. Lowest values for all nutritional parameters were observed for diets complemented with pinhão flour. Trypsin inhibitor activity was detected in PF50 but not in PF80. CONCLUSION: Pinhão flour heated at 80 °C for 16 h and used as supplementary in diet had the most similar results in all nutritional parameters to casein‐based diets, and can be used as a complementary source, substituting up to 20% of a high biological value protein in food formulations. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
Sorghum starch was annealed in excess water at 50 °C for 24 h. Starch was also modified under heat–moisture treatment at 110 °C after adjusting various moisture contents (20, 30 and 40%) for 8 h. Significant decrease in chain lengths of amylose fraction in HMT starches was observed. Heat moisture treated (HMT) and annealed (ANN) starches showed lower granule sizes, swelling power, peak and setback viscosity but higher retrogradation as compared to native starch. HMT starch with addition of 40% moisture showed a decrease in relative crystallinity. HMT and ANN starch gels were observed to be harder than native starch gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号