首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We employ in situ deposited secondary membranes of yeast (SMYs) to optimize permeate flux during microfiltration and ultrafiltration of protein solutions. The deposited secondary membrane was periodically removed by backflushing, and a new cake layer was deposited at the start of the next cycle. The effects of backflushing time, backflushing strength, wall shear rate, and amount of secondary membrane deposited on the permeate flux were examined. Secondary membranes were found to increase the permeate fluxin microfiltration by severalfold. Protein transmission was also enhanced owing to the presence of the secondary membrane, and the amount of protein recovered was more than twice that obtained during filtration of protein-only solutions under othewise identical conditions. In ultrafiltration, the flux enhancement owing to the secondary membrane was only 50% or less. In addition, the flux for ultrafiltration was relatively insensitive to changes in the concentration of yeast used during deposition of SMY and to the backflushing strength used to periodically remove the secondary membrane.  相似文献   

2.
Although macromolecular fouling of microfiltration membranes is one of the critical factors governing the performance of these filtration processes, there is still little fundamental understanding of the underlying phenomena that influence the initiation, rate, and extent of fouling. We have obtained experimental data for the flux decline during the stirred cell filtration of different commercial preparations of bovine serum albumin (BSA) through asymmetric polyethersulfone microfiltration membranes. The fouling characteristics of these commercial solutions varied substantially, with the flux decline directly related to the technique utilized to initially precipitate and prepare the BSA. Prefiltration of BSA solutions prior to microfiltration substantially reduced their fouling tendency, with the degree of improvement increasing as the prefiltration was performed through smaller molecular weight cut-off membranes. The protein solutions were also characterized using gel permeation chromatography (GPC), with the fouling tendency of the different BSA preparations highly correlated with the concentration of BSA dimers and other high molecular weight species present in these BSA solutions. These results suggest that BSA fouling of these microfiltration membranes is associated with the deposition of trace quantities of aggregated and/or denatured BSA, with these fouling species serving as initiation sites for the continued deposition of bulk protein.  相似文献   

3.
Recognition based separation using modified microfiltration membranes provides an efficient and cost-effective alternative to conventional column chromatography for the separation and purification of a specific protein from mixture of proteins. In this study, Tat protein, which has been proposed as the specific target for AIDS vaccine, was separated and purified from a complex mixture of proteins, known as bacterial lysate (BL) using avidin–biotin interaction in 4-stack microfiltration membranes system. It was established by SDS-PAGE and Western Blot analysis that membrane based process recovered more pure form of Tat compared to conventional packed-bead column chromatography. The critical factors involved in the process, mainly, the accessibility of the covalently immobilized avidin sites by the biotinylated protein and the associated fouling of the membranes due to the permeation of proteins, were also studied. The accessibility of immobilized avidin sites in membrane was quantified by biotinylated solutions of different types and compositions. It was observed that permeation of proteins caused substantial fouling on the membrane matrix. The resistance offered by the protein layer and the approximate thickness of the protein layer were also quantified.  相似文献   

4.
The transport properties of a novel porous fluorinated polyimide membrane fabricated by a wet phase inversion process were studied with a stirred dead‐end filtration cell. The porous membrane‐forming solvents were tetrahydrofuran (THF), acetone, N,N‐dimethylacetamide (DMAc), N‐methylpyrrolidone (NMP), N,N‐dimethylformamide (DMF), and dimethylsulfoxide (DMSO). The phase separation phenomena in a ternary system of polyimide/solvent/water were investigated from cloud point curves by a titration method and binary interaction parameters. Solvent–water demixing in the system has been found to play very important roles in determining the structure and surface morphology of the polyimide membrane. The porous fluorinated polyimide membranes showed pore sizes from 4 to 500 nm and permeation properties from ultrafiltration to a microfiltration range. In this study, we particularly focused on fouling of the polyimide membranes, because fouling decreases the flux and increases the resistance. Interestingly, the porous polyimide membrane showed excellent water flux recovery after water cleaning compared with that of the polyethersulfone (PSf) membrane, which suggest that for a 6FDA‐6FAP membrane, the protein–membrane and protein–protein interaction was not so strong compared with those in a PSf membrane. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Previous studies of protein fouling during microfiltration have shown significant discrepancies between filtrate flux data and predictions of the classical pore blockage, pore constriction, and cake filtration models. A new mathematical model was developed for the filtrate flux which accounts for initial fouling due to pore blockage and subsequent fouling due to the growth of a protein cake or deposit over these initially blocked regions. The model explicitly accounts for the inhomogeneity in the cake layer thickness over different regions of the membrane arising from the time-dependent blockage of the pore surface. The model was shown to be in excellent agreement with experimental data obtained during the stirred cell filtration of bovine serum albumin solutions through polycarbonate track-etched microfiltration membranes over the entire course of the filtration. The model provides a smooth transition from the pore blockage to cake filtration regimes, eliminating the need to use different mathematical formulations to describe these two phenomena. In addition, the model provides the first quantitative explanation for some of the unusual observations reported previously in investigations of protein microfiltration. The results provide important insights into the underlying mechanisms of protein fouling during microfiltration. Copyright 2000 Academic Press.  相似文献   

6.
Cross-flow ultrafiltration and microfiltration have been used to recover refined soy sauce from soy sauce lees for over 25 years. The precise mechanism which dominated the permeate flux during batch cross-flow filtration has not been clarified. In the present study, we proposed a modified analytical method incorporated with the concept of deadend filtration to determine the initial flux of cross-flow filtration and carried out the permeate recycle and batch cross-flow filtration experiments using soy sauce lees. We used UF and MF flat membrane (0.006 m2 polysulfone) module under different transmembrane pressures (TMP) and cross-flow velocities. The modified analysis provided an accurate prediction of permeate flux during the filtration of soy sauce lees, because this model can consider the change in J0 at initial stage of filtration which was caused by the pore constriction and plugging inside membrane, and these changes may not proceed when the cake was formed on the membrane surface. Mean specific resistance of the cake increased with TMP due to the compaction of the cake and decreased with cross-flow velocity due to the change of deposited particle size, but less depended on the membrane in the present study. These results indicate that the value of J0 determined by modified method was relevant to exclude the effects of the initial membrane fouling by pore constriction due to protein adsorption and plugging with small particles. The modified analytical method for the cake filtration developed in the present study was considered to be capable of selecting an appropriate operating conditions for many cross-flow filtration systems with UF, MF membranes.  相似文献   

7.
Crossflow microfiltration of skimmed milk to fractionate casein micelles and whey protein was investigated regarding length dependency of flux and whey protein permeation using a 1.2 m long, 0.1 μm tubular ceramic membrane. A special module consisting of four sections was constructed allowing to assess the effects of membrane length online by measuring flux and permeation of the whey protein β-lactoglobulin as a function of local processing conditions. It was found that under the applied filtration parameters (mean transmembrane pressure ΔpTM,m = 0.5 bar; temperature ? = 55 °C; wall shear stress τw = 115 Pa) main parts of the membrane were controlled by a deposit layer. In consequence, the transmission of the whey protein β-lactoglobulin increases from 38% to 87% from membrane inlet to membrane outlet. Results show that a local optimum for protein fractionation exists regarding membrane resistance and process conditions.  相似文献   

8.
Protein fouling remains a major problem in the use of microfiltration for many bioprocessing applications. Experiments were performed to evaluate the effect of membrane morphology and pore structure on protein fouling using different track-etched, isotropic, and asymmetric microfiltration membranes. Fouling of membranes with straight-through pores occurred by pore blockage caused by deposition of large protein aggregates on the membrane surface. However, the rate of blockage was a function of the membrane porosity due to the possibility of multiple pore blockage by a single protein aggregate on high porosity membranes. Membranes with interconnected pores fouled more slowly since the fluid could flow around the blocked pores through the interconnected pore structure. This behavior was quantified using model membrane systems with well-defined pore morphology constructed from track-etch and isotropic membranes in a layered series combination. These results provide important insights into the effects of membrane pore structure and morphology on protein fouling.  相似文献   

9.
Dependences of the structural, electrokinetic, and adsorption characteristics on solution pH and background electrolyte (NaCl) concentration are extensively studied for Sartorius and Vladisart cellulose acetate microfiltration membranes with pore sizes of 0.45 and 0.2 μm and a Vladisart ultrafiltration membrane with the rejection of 20 kD. It is revealed that effective hydrodynamic pore radii and maximum pore radii of the microfiltration membranes are 1.5-to 2-and 2.5-to 4-fold, respectively, larger than those presented in the catalog, which is related to the membrane calibration relative to the sizes of rejected particles. For the ultrafiltration membrane, it is shown that, when the pressure increased from 0.5 to 8.0 atm, filtration factor of a liquid and streaming potential substantially decrease owing to the contraction of the polymer network. Measurements of membrane conductivity by the difference and contact methods suggest that a structural anisotropy is virtually absent in the microfiltration membranes and that the ultrafiltration membrane has a nonuniform structure. Negative electrokinetic potentials, whose absolute values increase with the pH and dilution of a background electrolyte solution, are observed for all studied membranes. Isoelectric points of the ultrafiltration and microfiltration membranes are observed at pH ≤ 3 and 2.1 ± 0.2, respectively.  相似文献   

10.
Particle fouling mechanisms in “dead-end” microfiltration is analyzed using blocking models. The blocking index and resistance coefficient of the models during microfiltration are calculated under various conditions. The major factors affecting these model parameters, such as the filtration rate, the amount of particles simultaneously arriving at the membrane surface and particle accumulation, are discussed thoroughly. Instead of the four different blocking models previously proposed, a membrane blocking chart is established for relating the blocking index, filtration rate, and particle accumulation. Blocking index variation during microfiltration can be interpreted using this chart. Membrane blocking occurs during the initial filtration periods until the condition reaches a critical value; then, the blocking index suddenly drops to zero by following up the cake filtration model. Once the normalized resistance coefficient is regressed to an exponential function of the blocking index under a wide range of conditions, the blocking models can be used to quantitatively explain filtration flux attenuation by solving a unitary mathematical equation. Comparing the experimental filtration rates obtained under different conditions with the simulated results reveals a good agreement between them and demonstrates the reliability of this analysis method.  相似文献   

11.
A theoretical model of dead-end microfiltration (MF) of dilute suspensions is proposed. The model is based on a sieve mechanism of MF and takes into account the probability of membrane pore blocking during MF of dilute colloidal suspensions. An integro-differential equation (IDE) that includes both the membrane pore size and the particle size distributions is deduced. According to the suggested model a similarity property is applicable, which allows one to predict the flux through the membrane as a function of time for any pressure, and dilute concentration, based on one experiment at a single pressure and concentration. The suggested model includes only one fitting parameter, β>1, which takes into account the range of the hydrodynamic influence of a single pore. For a narrow pore size distribution in which one pore diameter predominates (track-etched membranes), the IDE is solved analytically and the derived equation is in good agreement with the measurements on different track-etched membranes. A simple approximate solution of the IDE is derived and that approximate solution, as well as the similarity principal of MF processes, is in good agreement with measurements using a commercial Teflon microfiltration membrane. The theory was further developed to take into account the presence of multiple pores (double, triple and so on pores) on a track-etched membrane surface.

A series of new dead-end filtration experiments are compared with the proposed initial and modified pore blocking models. The challenge suspension used was nearly monodispersed suspension of latex particles of 0.45 μm filtered on a track-etched membrane with similar sized pores 0.4 μm. The filtered suspension concentration ranged from 0.00006 to 0.01% (w/w) and the cross-membrane pressures varied from 1000 to 20,000 Pa. Three stages of microfiltration have been observed. The initial stage is well described by the proposed pore blocking model. The model required only a single parameter that was found to fit all the data under different experimental operational conditions. The second stage corresponds to the transition from the blocking mechanism to the third stage, which is cake filtration. The latter stage occurred after approximately 10–12 particle layers were deposited (mass = 0.006 g) on the surface of the microfiltration membrane.  相似文献   


12.
The properties of dead-end microfiltration were explored under constant pressure using two types of activated sludge controlled under the condition of different air flow rates. The activated sludge cultured at the air flow rate of 0.15 L min−1 (the anaerobic condition) exhibited a significant flux decline compared with the case of the air flow rate of 2.33 L min−1 (the aerobic condition). It was found from the results of microfiltration of the supernatant separated by centrifugation that the constituents in the supernatant caused a major cake resistance in microfiltration of the activated sludge. The average specific filtration resistance for filtration of the activated sludge was closely consistent with that for filtration of the supernatant at low pressure (49 kPa). However, the cake resistance of the microbial floc in microfiltration of the activated sludge became substantial with increasing filtration pressure because of high compressibility of the microbial floc. Moreover, the foulant and the fouling mechanism in microfiltration of the supernatant were evaluated from both microfiltration test of the supernatant and microfiltration test of the filtrate collected thereby. As a result, the effects of the pore size and material of the microfiltration membrane on the flux decline behaviors in dead-end microfiltration were reasonably elucidated.  相似文献   

13.
We have investigated the consequences due to the changes in hydrodynamics above the membrane surface brought about by an oscillatory flow in the crossflow microfiltration (CFMF) of beer on a tubular mineral membrane. Experimental results in oscillatory flow filtration were analysed in terms of membrane resistance to filtration and energy consumption and compared with steady flow filtration. Two types of beers were used: a clarified beer composed of colloids and macromolecular material and a rough beer containing in addition yeast cells. Oscillatory flow was found to decrease membrane fouling resistance (up to 100%) in rough beer filtration in the presence of a yeast cell cake layer on the membrane surface, whereas it has no effect in clarified beer filtration in the presence of membrane clogging. The detrimental effect of transmembrane pressure on membrane resistance (at ΔP>1 bar) has been emphasized in both oscillatory and steady flows. The time-average hydraulic power dissipated by friction in the filtration module, in relation with the absolute value of the time-average flow rate in oscillatory flow, was found to be systematically higher than for steady flow filtration. However, the hydraulic energy per unit volume of permeate in the microfiltration of rough beer under oscillatory flow was close to that in steady flow at a time-average tangential velocity of 3 m/s. By considering the specific energy (per m3 of permeate) related to the kinetic energy applied to fluid in oscillatory and steady flow modes, the system by gas compression in oscillatory flow led to a reduction of specific energy ranging from 15% to 40%. Finally the ratio of hydraulic power consumed in oscillatory and steady flow was compared with a theoretical calculation based on the assumption that the oscillating flow regime is quasi-steady.  相似文献   

14.
Dense mixed proton and electron conducting membrane made of BaCe0.95Nd0.05O3-δ(BCNd5)was prepared by pressing followed by sintering.X-ray diffraction(XRD)was used to characterize the phase structure of both the powder and the sintered membranes.The microstructure of the sintered membranes was studied by scanning electron microscopy(SEM).Hydrogen permeation through the BCNd5 membrane was studied using a high temperature permeator.The hydrogen permeation fluxes under wet conditions are higher than those under dry conditions,which is due to H hopping via surface OH groups.At 925℃,a hydrogen permeation flux of 0.02 mL/min cm2 was obtained under wet condition.which recommends BCNd5 as a potential material for hydrogen-selective membranes.  相似文献   

15.
Fouling by natural organic matter, such as humic substances, is a major factor limiting the use of microfiltration for water purification. The objective of this study was to develop a fundamental understanding of the underlying mechanisms governing humic acid fouling during microfiltration using a combined pore blockage–cake filtration model. Data were obtained over a range of humic acid concentrations, transmembrane pressures, and stirring speeds. The initial flux decline was due to pore blockage caused by the deposition of large humic acid aggregates on the membrane surface, with a humic acid deposit developing over those regions of the membrane that have first been blocked by an aggregate. The rate of cake growth approaches zero at a finite filtrate flux, similar to the critical flux concept developed for colloidal filtration. The data were in good agreement with model calculations, with the parameter values providing important insights into the mechanisms governing humic acid fouling during microfiltration. In addition, the basic approach provides a framework that can be used to analyze humic acid fouling under different conditions.  相似文献   

16.
Glucose oxidase (GOD) and catalase (CAT) were covalently immobilized onto three types of polyacrylonitrile (PAN 1, PAN 2, and PAN 3) ultrafiltration (UF) membranes with different pore sizes and one type of polyamide (PA) microfiltration (MF) membrane by the bifunctional reagent, glutaraldehyde. The initial membranes were pre-modified to generate active amide groups in the PAN membranes and active amino groups in the PA membranes. The PAN 3 membrane contained the highest amount of active groups, and the membrane PA the lowest. The modified membranes were enzyme-loaded by diffusion and convection (UF). The effect of membrane pore size and immobilization methods on enzymatic activity and bound protein were studied. The most effective immobilized system was prepared by diffusion using a PAN 3 membrane as a carrier (bound protein: 0.055 mg/cm(2), relative activity: 87.6%). This membrane had the highest pore size of all the PAN membranes. Despite the highest pore size of PA membrane, the enzyme PA membranes prepared by diffusion showed the lowest amount of bound protein (0.03 mg/cm(2)) and the lowest relative activity (35.38%). This correlates with the lowest amount of active groups found in these membranes. The relative activity was higher for all the enzyme systems loaded by diffusion. The systems prepared by convection of the enzyme solution contained higher amounts of enzymes (0.035-0.13 mg/cm(2) protein), which led to internal substrate diffusion resistance and a decrease in the GOD relative activity (21.55-68.5%) in these systems. The kinetic parameters (V(max) and K(m)) and the glucose conversion of the immobilized systems prepared by diffusion were also studied. [diagram in text].  相似文献   

17.
Dense mixed proton and electron conducting membrane made of BaCe0.95Nd0.05O3-δ (BCNd5) was prepared by pressing followed by sintering. X-ray diffraction (XRD) was used to characterize the phase structure of both the powder and the sintered membranes. The microstructure of the sintered membranes was studied by scanning electron microscopy (SEM). Hydrogen permeation through the BCNd5 membrane was studied using a high temperature permeator. The hydrogen permeation fluxes under wet conditions are higher than those under dry conditions, which is due to H^+ hopping via surface OH groups. At 925℃, a hydrogen permeation flux of 0.02 mL/min cm^2 was obtained under wet condition, which recommends BCNd5 as a potential material for hydrogen-selective membranes.  相似文献   

18.
Pretreatment of whey by microfiltration (MF) has emerged as a necessary step in producing high purity whey protein concentrates. In the MF of pretreated whey using a Carbosep M14 membrane (pore diameter 0.14 μm), proteins and calcium phosphate aggregates were responsible for fouling, which increased according to the “complete blocking” filtration law and accounted for a progressive decrease of the active filtering area. An operating mode with dynamic counter pressure (recirculation of the permeate co-current to the retentate), as opposed to static counter pressure, allowed lower overall fouling, a longer time of operation and better protein recovery because of more evenly distributed fouling along the membrane tube. At shorter times of operation, fouling was greater under higher transmembrane pressure (TP), so that the less fouled areas under lower TP were forced to filter larger volumes and consequently became fouled more rapidly. This involved a movement of the effective filtering area along the membrane tube, as evidenced by the systematic evolution of fouling heterogeneity as measured by infra-red spectroscopy.  相似文献   

19.
After 70 years, modern pressure‐driven polymer membrane processes with liquids are mature and accepted in many industries due to their good performance, ease of scale‐up, low energy consumption, modular compact construction, and low operating costs compared with thermal systems. Successful isothermal operation of synthetic membranes with liquids requires consideration of three critical aspects or “legs” in order of relevance: selectivity, capacity (i.e. permeation flow rate per unit area) and transport of mass and momentum comprising concentration polarization (CP) and fouling (F). Major challenges remain with respect to increasing selectivity and controlling mass transport in, to and away from membranes. Thus, prediction and control of membrane morphology and a deep understanding of the mechanism of dissolved and suspended solute transport near and in the membrane (i.e. diffusional and convective mass transport) is essential. Here, we focus on materials development to address the relatively poor selectivity of liquid membrane filtration with polymers and discuss the critical aspects of transport limitations. Machine learning could help optimize membrane structure design and transport conditions for improved membrane filtration performance.  相似文献   

20.
After 70 years, modern pressure‐driven polymer membrane processes with liquids are mature and accepted in many industries due to their good performance, ease of scale‐up, low energy consumption, modular compact construction, and low operating costs compared with thermal systems. Successful isothermal operation of synthetic membranes with liquids requires consideration of three critical aspects or “legs” in order of relevance: selectivity, capacity (i.e. permeation flow rate per unit area) and transport of mass and momentum comprising concentration polarization (CP) and fouling (F). Major challenges remain with respect to increasing selectivity and controlling mass transport in, to and away from membranes. Thus, prediction and control of membrane morphology and a deep understanding of the mechanism of dissolved and suspended solute transport near and in the membrane (i.e. diffusional and convective mass transport) is essential. Here, we focus on materials development to address the relatively poor selectivity of liquid membrane filtration with polymers and discuss the critical aspects of transport limitations. Machine learning could help optimize membrane structure design and transport conditions for improved membrane filtration performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号