首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesangial cells (MC) are a main target of natriuretic peptides in the kidney and are thought to play a role in regulating glomerular filtration rate. We examined the influence of cGMP-generating (i.e. guanosine 3',5'-cyclicmonophosphate) peptides on membrane voltages (Vm) of rat MC by using the fast whole-cell patch-clamp technique. The cGMP-generating peptides were tested at maximal concentrations ranging from 140 to 300 nmol/l. Whereas human CNP (C natriuretic peptide), rat guanylin and human uroguanylin had no significant effect on Vm these cells, human BNP (brain natriuretic peptide), rat CDD/ANP-99-126 (cardiodilatin/atrial natriuretic peptide) and rat CDD/ANP-95-126 (urodalatin) hyperpolarized Vm significantly by 1.6 +/- 0.4 mV (BNP, n=8), 3.7 +/- 0.3 mV (CDD/ANP-99-126, n=25) and 2.8 +/- 0.4 mV (urodilatin, n=9), respectively. The half-maximally effective concentration (EC50) for the latter two was around 400 pmol/l each. This hyperpolarization could be mimicked with 0.5 mmol/l 8-bromo-guanosine 3',5'-cyclic monophosphate (8-Br-cGMP) and was blocked by 5 mmol/l Ba2+. The K+ channel blocker 293 B (100 micromol/l) depolarized basal Vm by 4.3 +/- 0.4 mV (n=8), but failed to inhibit the hyperpolarization induced by CDD/ANP-99-126 (160 nmol/l) (n=8). The K+ channel opener cromakalim (10 micromol/l) neither influenced basal Vm nor altered the hyperpolarization induced by 160 nmol/l CDD/ANP-99-126 (n=8). Adenosine (100 micromol/l) hyperpolarized Vm by 13.4 +/- 1.3 mV (n=16). At 100 micromol/l, 293 B did not inhibit the adenosine-induced hyperpolarization (n=6). At 160 nmol/l, CDD/ANP-99-126 enhanced the adenosine-induced hyperpolarization significantly by 1.5 +/- 0.6 mV (n=10). CDD/ANP-99-126 (160 nmol/l) failed to modulate the value to which Vm depolarized in the presence of 1 nmol/l angiotensin II (n=10), but accelerated the repolarization to basal Vm by 49 +/- 20% (n=8). These results indicate that the natriuretic peptides CDD/ANP-99-126, CDD/ANP-95-126 and BNP hyperpolarize rat MC probably due to an increase of a K+ conductance. This effect modulates the voltage response induced by angiotensin II. The natriuretic-peptide-activated conductance can be blocked by Ba2+, but not by 293 B and cannot be activated by cromakalim. This increase in the K+ conductance seems to be additive to that inducable by adenosine, indicating that different K+ channels are activated by these hormones.  相似文献   

2.
Preischemic adrenergic stimulation may affect postischemic cardiac function. Using an isolated working heart model, we investigated the effects of preischemic catecholamine treatment on postischemic recovery. Hearts from Wistar rats were perfused in working mode for 20 min, in Langendorff mode for 15 min, and again in working mode for 20 min (W2). Hearts were treated with isoproterenol (8.0 and 40.0 nmol/L), phenylephrine (0.06, 0.30, and 1.50 micromol/L), or epinephrine (16 and 80 nmol/L) during the W2 period and then arrested with St Thomas' Hospital cardioplegic solution (STH) and subjected to global ischemia (37 degrees C or 20 degrees C), followed by reperfusion. At 37 degrees C, isoproterenol had a beneficial effect at the lower dose but a harmful effect at the higher dose; phenylephrine and epinephrine had a harmful effect at all doses. At 20 degrees C, isoproterenol and epinephrine had a harmful effect at a high dose; phenylephrine had no harmful effect at any dose. In a separate study, the influence of calcium modulators (diltiazem and ryanodine, added in the STH) on the catecholamine effect was investigated. The harmful effect of preischemic treatment with isoproterenol (24.0 nmol/L) or phenylephrine (0.9 micromol/L) was abolished by the calcium modulators. Thus, preischemic beta-adrenergic or alpha + beta-adrenergic stimulation has a deleterious effect on postischemic recovery of the myocardium. The effect could be altered depending on the subtype and dose of catecholamine and the ischemic temperature. Intracellular calcium movement could be involved in the mechanism responsible for the harmful effect of preischemic catecholamine treatment.  相似文献   

3.
Both contractile and relaxant responses to tetrapentylammonium ions (TPA+) were studied in rat isolated mesenteric artery. TPA+ (5-10 micromol/l) caused a sustained increase of muscle tension. The contractile effect of TPA+ (10 micromol/l) was dependent upon the presence of extracellular Ca2+ but independent of the presence of endothelium. TPA+ (10-50 micromol/l) induced biphasic contraction, and the amplitude of peak and sustained tension decreased with increasing TPA+ concentration. TPA+ (100-300 micromol/l) only produced monophasic contraction. TPA+ (50 micromol/l) abolished the transient contraction induced by caffeine (10 mmol/l) or phenylephrine (1 micromol/l) in the absence of extracellular Ca2+. Nifedipine and verapamil concentration-dependently reduced the TPA+-induced contraction with respective IC50 values of 1.34 +/- 0. 24 and 9.46 +/- 1.36 nmol/l, these values were similar to 1.35 +/- 0. 21 and 16.07 +/- 1.71 nmol/l, respectively, for the inhibitory effects of nifedipine and verapamil on the high K+ (60 mmol/l)-induced contraction. TPA+ (>10 micromol/l) concentration-dependently reduced the phenylephrine (1 micromol/l)-, U46619 (30 nmol/l)-, endothelin I (10 nmol/l)- and high K+ (60 mmol/l)-induced sustained tension with respective IC50 values of 53. 7 +/- 9.5, 31.9 +/- 5.3, 30.9 +/- 3.4 and 20.9 +/- 2.8 micromol/l. The present results indicate that TPA+ at low concentrations could contract the arterial smooth muscle probably through promoting Ca2+ influx. At higher concentrations (>20 micromol/l), TPA+ relaxes arterial smooth muscle probably through inhibition of both nifedipine-sensitive Ca+ channels and internal Ca2+ release. TPA+, unlike other quaternary ammonium ions, could therefore act at multiple sites in arterial smooth muscle.  相似文献   

4.
Free Ca2+ was measured in intracellular stores of individual mouse pancreatic beta-cells using dual-wavelength microfluorometry and the low-affinity Ca2+ indicator furaptra. Controlled permeabilization of the plasma membrane with 4 micromol/l digitonin revealed that 22% of the furaptra was trapped in intracellular nonnuclear compartments. When 3 mmol/l ATP and 200 nmol/l Ca2+ were simultaneously present, this cation rapidly accumulated in the organelle pool, reaching an average concentration of 200-500 micromol/l. Whereas agents affecting the mitochondrial function (5 mmol/l succinate, 2 micromol/l ruthenium red, or 10 micromol/l antimycin A + 2 microg/ml oligomycin) had little effects, the Ca2+-ATPase inhibitor thapsigargin released 92% of the Ca2+ mobilizable with the ionophore Br-A23187. Digital imaging revealed regional differences in the organelle Ca2+. The regions with the highest Ca2+ concentration were particularly responsive to inositol 1,4,5-trisphosphate (IP3). IP3 mobilized Ca2+ in a dose-dependent way with half-maximal and maximal effects at about 1 and 5 micromol/l, respectively. High concentrations of IP3 released about half of the thapsigargin-sensitive Ca2+, but there were no responses to agents known to activate ryanodine receptors, such as 10 mmol/l caffeine, 0.1-1 micromol/l ryanodine, or 1-5 micromol/l cyclic ADP ribose. The results reinforce the concept that mobilization of intracellular Ca2+ in the pancreatic beta-cell is mediated by IP3 receptors rather than ryanodine receptors.  相似文献   

5.
A cellular suspension from rat submandibular glands was prepared with collagenase. The intracellular pH (pHi) was estimated with 2',7'-bis-(2-carboxy-ethyl)-5(6)-carboxyfluorescein (BCECF). After exposure to NH4Cl, the pHi transiently increased (diffusion of NH3) and then dropped (influx of NH4+). Isoproterenol increased 2.5-fold the rate of NH4+ influx; bumetanide, an inhibitor of the Na+-K+-2Cl(-)-cotransporter blocked the response to isoproterenol, confirming that the beta-adrenergic agonist stimulated the cotransporter. Forskolin (1 micromol/L) mimicked the response to isoproterenol. VIP (1 nmol/L(-1) micromol/L) also increased the activity of the cotransporter. Cyclic AMP rather than calcium was the mediator of this activation since 1) carbachol which increased the [Ca2+]i fivefold increased the uptake of NH4+ by only 50%; 2) only high concentrations of VIP significantly increased the [Ca2+]i; 3) incubation in the presence of EGTA had no effect on the response to VIP; 4) low concentrations (nmol/L) of the neuropeptide increased the intracellular level of cAMP; and 5) the stimulation of the cotransporter by VIP, forskolin, and isoproterenol was inhibited by H8, an inhibitor of cAMP-dependent protein kinase. It is concluded that the Na+-K+-2Cl(-)-cotransporter of rat submandibular glands is activated by isoproterenol, forskolin, and neuropeptides of the VIP family by a mechanism involving cAMP-dependent processes. The activation of the cotransporter by VIP could partly explain the potentiating effect of VIP on the response to sialagogues like substance P or muscarinic agonists.  相似文献   

6.
OBJECTIVE: Human myometrium contains both beta1-adrenergic and beta2-adrenergic receptors. This study was designed to assess the importance of each beta-adrenergic receptor subtype in relaxation of human myometrial muscle strips. STUDY DESIGN: Radioligand binding studies were used to establish the presence of each beta-adrenergic receptor subtype, whereas highly selective beta1-antagonists and beta2-antagonists were used to assess the contribution of beta-adrenergic receptor subtypes to myometrial relaxation after exposure to (-)-isoproterenol. RESULTS: Membranes prepared from myometrium contained 82% +/- 4% beta2-adrenergic receptors. After contraction produced by exposure to potassium chloride (35 mmol/L), isoproterenol produced relaxation with half maximal effect at 0.02 micromol/L and a maximal relaxation of 52% +/- 3%. Beta1-antagonist CGP-20712A had no significant effect, whereas beta2-antagonist ICI-118551 produced a characteristic rightward shift of the isoproterenol concentration-relaxation relationship. CONCLUSIONS: Although both beta1-adrenergic receptors and beta2-adrenergic receptors are present in human myometrial tissue at term, relaxation by nonselective beta-agonist isoproterenol is mediated exclusively by beta2-adrenergic receptors.  相似文献   

7.
The inhibitors of the Na+/H+-exchange (NHE1) system Hoe 694 and Hoe 642 possess cardioprotective effects in ischaemia/reperfusion. It is assumed that these effects are due to the prevention of intracellular sodium (Nai) and calcium (Cai) overload. The purpose of the present study was to investigate the effects of Hoe 642 on intracellular pH, Na+ and Ca2+ (pHi, Nai and Cai) in isolated rat ventricular myocytes under anoxic conditions or in cells in which oxidative phosphorylation had been inhibited by 1.5 mmol/l cyanide. In cells which were dually loaded with the fluorescent dyes 2, 7-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and Fura-2, anoxia caused acidification of the cells (from pHi 7.2 to pHi 6.8) and an increase in Cai from about 50 nmol/l to about 1 micromol/l. The decrease in pHi began before the cells underwent hypoxic (rigor) contracture, whereas Cai only began to rise after rigor shortening had taken place. After reoxygenation, pHi returned to its control value and Cai oscillated and then declined to resting levels. It was during this phase that the cells rounded up (hypercontracture). When 10 micromol/l Hoe 642 was present from the beginning of the experiment, pHi and Cai were not significantly different from control experiments. At reoxygenation, pHi did not recover, but Cai oscillated and returned to its resting level. To monitor Nai, the cells were loaded with the dye SBFI. After adding 1.5 mmol/l cyanide or 100 micromol/l ouabain, Nai increased from the initial 8 mmol/l to approximately 16 mmol/l. Hoe 642 or Hoe 694 (10 micromol/l) did not prevent the increase in Nai. In contrast, the blocker of the persistent Na+ current R56865 (10 micromol/l) attenuated the CN--induced rise in Nai. The substance ethylisopropylamiloride was not used because it augmented considerably the intensity of the 380 nm wavelength of the cell's autofluorescence. In conclusion, the specific NHE1 inhibitor Hoe 642 did not attenuate anoxia-induced Cai overload, nor CN--induced Nai and Cai overload. Hoe 642 prevented the recovery of pHi from anoxic acidification. This low pHi maintained after reoxygenation may be cardioprotective. Other possible mechanisms of NHE1 inhibitors, such as prevention of Ca2+ overload in mitochondria, cannot be ruled out. The increase in Nai during anoxia is possibly due to an influx of Na+ via persistent Na+ channels.  相似文献   

8.
OBJECTIVE: The aim was to investigate the effects of the potassium-channel opener pinacidil on single uterine potassium channels and the contribution of the latter to pinacidil-induced myometrial relaxation. STUDY DESIGN: Myometrial strips and freshly dispersed uterine myocytes were prepared from the myometrial biopsy samples of women undergoing elective, nonlabor caesarean section at term gestation. RESULTS: In isometric tension experiments pinacidil potently relaxed pregnant nonlabor human myometrial strips, with an agonist concentration yielding the half maximal response of 0.4 +/- 0.1 micromol/L. This effect was antagonized by 500 nmol/L charybdotoxin. Application of 10 micromol/L glibenclamide also inhibited the pinacidil-induced relaxation. Coapplication of charybdotoxin (500 nmol/L) and glibenclamide (10 micromol/L) produced a biphasic curve, which was fitted to a two-site model with values for agonist concentration yielding the half maximal response of 0.6 +/- 0.2 micromol/L and 189.7 +/- 0.8 micromol/L. Large-conductance calcium-dependent potassium channel activity was dramatically increased after application of pinacidil (between 10 and 100 micromol/L) to both inside-out and outside-out patches. The activation required the presence of calcium ions at the intracellular aspect of the membrane. Charybdotoxin but not glibenclamide blocked pinacidil-induced unitary large-conductance calcium-dependent potassium channel activity. CONCLUSION: Pinacidil-mediated relaxation of human pregnant myometrial strips may be partially attributable to the opening of uterine large-conductance calcium-dependent potassium channels in addition to adenosine triphosphate potassium channel activation. Drugs with specific potassium channel-activating properties may have important clinical application as novel tocolytics in the treatment of preterm labor.  相似文献   

9.
In this study, we determined the pharmacological activities of MJ-451 (6-cyano-3S,4R-dihydro-2, 2-dimethyl-2H-3-hydroxy-4-[2-oxo-5S-1-hydroxmethyl)-1-pyrrolidinyl ]-1 -benzopyran) in guinea pig isolated trachea and compared its effects with those of cromakalim. MJ-451 (0.1-10 micromol/l) and cromakalim (0.01-1 micromol/l) produced concentration-dependent relaxation of guinea pig isolated trachea precontracted with carbachol (0.5 micromol/l) or histamine (1 micromol/l). MJ-451 (0.03-30 micromol/l), as well as cromakalim (0.03-30 micromol/l), caused a complete and concentration-dependent relaxation of guinea pig isolated trachea precontracted with 20 mmol/l KCl, but did not inhibit the spasmogenic effect of 80 mmol/l KCl. However, theophylline (30-3,000 micromol/l) caused a complete and concentration-dependent relaxation of guinea pig isolated trachea precontracted with either 20 or 80 mmol/l KCl. Propranolol (0.1 micromol/l) markedly antagonized the relaxant action of isoprenaline, but not that of MJ-451 in carbachol-contracted isolated trachea. 8-(p)-sulfophenyltheophylline (150 micromol/l), a selective P1 purinoceptor antagonist, had no effect against the tracheal relaxation induced by MJ-451, but markedly depressed the concentration-response curve of 5'-N-ethylcarboxamidoadenosine. Charybdotoxin (10 micromol/l), a large-conductance Ca2+-activated K+ channel blocker, failed to modify the relaxant activity of MJ-451 in carbachol-contracted isolated trachea. The ATP-sensitive K+ channel blocker, glibenclamide (0.1, 1 and 10 micromol/l) concentration-dependently antagonized the relaxant activity of MJ-451 in carbachol-contracted isolated trachea. It is concluded that MJ-451 is a selective ATP-sensitive K+ channel opener in the tracheal smooth muscle of the guinea pig.  相似文献   

10.
This study aimed to characterize the interaction between nitric oxide (NO)- and cAMP-related pathways in the control of renal blood flow. Using the isolated perfused rat kidney model, we determined the effects of inhibition of NO formation by Nomega-nitro-L-arginine methyl ester (L-NAME; 1 mmol/L) and of NO administration by sodium nitroprusside (SNP, 10 micromol/L) on renal vascular resistance under conditions of elevated vascular cAMP levels. cAMP levels were increased either by adenylate cyclase activation via isoproterenol or by inhibition of cAMP phosphodiesterases (PDEs) 1, 3, and 4. We found that L-NAME markedly increased vascular resistance and that this effect was completely reversed by SNP. Both isoproterenol and inhibitors of the cAMP PDEs lowered basal vascular resistance. In the presence of isoproterenol (3 nmol/L) and inhibitors of PDE-1 [8-methoxymethyl-l-methyl-3-(2-methylpropyl)-xanthine; 8-MM-IBMX, 20 micromol/L] and PDE-4 (rolipram, 20 micromol/L), L-NAME again substantially increased vascular resistance, and this effect of L-NAME was completely reversed by SNP. In the presence of the PDE-3 inhibitors milrinone (20 micromol/L) and trequinsin (200 nmol/L), however, both L-NAME and SNP failed to exert any additional effects. Because PDE-3 is a cGMP-inhibited cAMP PDE and because the vasodilatory effect of SNP was abrogated by the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) (20 micromol/L), our findings are compatible with the idea that an action of NO on PDE-3 could account for the vasodilatory properties of NO on the renal vasculature. Moreover, our findings suggest that PDE-3 activity is an important determinant of renal vascular resistance.  相似文献   

11.
This study assessed the effects of exogenous isoproterenol on the proliferation of the proximal tubular cell lines MCT and LLC-PK1. Both cell lines express beta-adrenergic receptors as demonstrated by Scatchard analysis of binding data, receptor-cross linking studies, and mRNA expression for beta 2-adrenergic receptors. Isoproterenol (10(-7) M) for 15 min stimulated the formation of intracellular cAMP in MCT cells (controls, 8.0 +/- 0.7; isoproterenol, 12.6 +/- 0.89 fmol of cAMP/microgram of protein; P < 0.01). This effect was blocked by the beta-receptor antagonist propranolol (10(-6) M). Isoproterenol, in a dose-dependent manner, also induced proliferation in MCT and LLC-PK1 cells, as measured by [3H]thymidine incorporation and direct cell counts. Time-course experiments demonstrated maximal mitogenesis 48 h after a single dose of 10(-7) M isoproterenol. This mitogenic effect was mimicked by a stable cAMP analog or cholera toxin, but not by a cGMP analog, indicating that the isoproterenol-mediated growth effects are likely caused by cAMP. These results provide evidence that isoproterenol is a mitogenic growth factor for cultured proximal tubular cells. These findings may be important in the growth mechanisms involved in the proliferative remodeling of injured tubules after acute renal failure.  相似文献   

12.
BACKGROUND: Elevated homocysteine concentrations have been associated with premature arteriosclerosis and with impairment of key methylation reactions through accumulation of the homocysteine metabolite S-adenosylhomocysteine. In end-stage renal failure high homocysteine concentrations are commonly found but thus far the concentrations of related adenosylated metabolites in plasma have not been assessed. METHODS: In this prospective study we determined plasma homocysteine and related metabolites in 25 patients on regular haemodialysis, and in 40 healthy volunteers. Blood samples from patients were drawn immediately before and in 10 patients additionally after the dialysis session. RESULTS: Folic acid and vitamin B12 in plasma were similar in patients (mean +/- SEM 25+/-2 nmol/l and 400+/-41 pmol/l respectively) and controls (24+/-3 and 324+/-23 respectively). In patients plasma homocysteine, S-adenosylmethionine and S-adenosylhomocysteine were markedly elevated (36.6+/-3.6 micromol/l, 381+/-32nmol/l and 1074+/-55 nmol/l respectively) compared to the control values (6.8+/-0.4 micromol/l, 60+/-3 nmol/l and 24.4+/-1.1 nmol/l respectively) whereas the molar ratio of plasma S-adenosylmethionine and S-adenosylhomocysteine was significantly decreased (0.36+/-0.02 and 2.7+/-0.2 in patients and controls respectively). Haemodialysis failed to normalize the abnormal levels of these metabolites. CONCLUSION: Since the ratio of S-adenosylmethionine : S-adenosylhomocysteine is closely linked to the activity of numerous enzymatic methylation reactions, these results suggest that methylation may be impaired in these patients.  相似文献   

13.
The properties of the Na+ current present in thalamocortical neurons of the dorsal lateral geniculate nucleus were investigated in dissociated neonate rat and cat neurons and in neurons from slices of neonate and adult rats using patch and sharp electrode recordings. The steady-state activation and inactivation of the transient Na+ current (INa) was well fitted with a Boltzmann curve (voltage of half-maximal activation and inactivation, V1/2, -29.84 mV and -70.04 mV, respectively). Steady-state activation and inactivation curves showed a small region of overlap, indicating the occurrence of a INa window current. INa decay could be fitted with a single exponential function, consistent with the presence of only one channel type. Voltage ramp and step protocols showed the presence of a noninactivating component of the Na+ current (INaP) that activated at potentials more negative (V1/2 = -56.93 mV) than those of INa. The maximal amplitude of INaP was approximately 2.5% of INa, thus significantly greater than the calculated contribution (0.2%) of the INa window component. Comparison of results from dissociated neurons and neurons in slices suggested a dendritic as well as a somatic localization of INaP. Inclusion of papain in the patch electrode removed the fast inactivation of INa and induced a current with voltage-dependence (V1/2 = -56.92) and activation parameters similar to those of INaP. Current-clamp recordings with sharp electrodes showed that INaP contributed to depolarizations evoked from potentials of approximately -60 mV and unexpectedly to the amplitude and latency of low-threshold Ca2+ potentials, suggesting that this noninactivating component of the Na+ channel population plays an important role in the integrative properties of thalamocortical neurons during both tonic and burst-firing patterns.  相似文献   

14.
In the present study the electrophysiological characteristics and the proarrhythmic potential of cisapride and a structurally related drug, mosapride, were compared. In the anesthetized guinea pig, cisapride and d-sotalol (0.01-10 micromol/kg i.v., n = 6) dose-dependently prolonged the duration of the monophasic action potential recorded from the left ventricle. The maximal lengthening was 18 +/- 3.2% at 1.0 micromol/kg (mean +/- S.E.M., P < .01 vs. base line) and 19 +/- 2.5% at 10 micromol/kg (P < .001) for cisapride and d-sotalol, respectively. In contrast, mosapride did not increase this variable. In a rabbit model of the acquired long QT syndrome, infusion of cisapride (0.3 micromol/kg/min for 10 min maximum, n = 6), but not mosapride or vehicle, was associated with a significant lengthening of the QTU interval (43 +/- 3.8 ms, P < .01). Furthermore, torsades de pointes appeared in two of the six rabbits given cisapride. In isolated rabbit Purkinje fibers (PF), cisapride increased the action potential duration (48 +/- 5.6% at 0.1 micromol/l, P < .01 vs. control, n = 4). Mosapride did not significantly influence the action potential duration (3 +/- 2.0% increase at 1.0 micromol/l, n = 6). However, after mosapride was washed out, the addition of cisapride (0.1 micromol/l) caused a 46 +/- 3.2% lengthening of the action potential duration (P < .01 vs. 1.0 micromol/l mosapride). Early afterdepolarizations and triggered activity appeared in four of eight cisapride-superfused PF stimulated at a very low frequency (0.1 Hz). In isolated rabbit cardiomyocytes, cisapride concentration-dependently blocked (IC50 = 9 nmol/l) the rapid component of the delayed rectifying K+ current (I(Kr)). Mosapride was approximately 1000-fold less potent in blocking I(Kr) (IC50 = 4 micromol/l). It is concluded that the electrophysiological characteristics of cisapride may explain the recently reported propensity to prolong the QT interval and to induce torsades de pointes in susceptible patients, although a structurally related benzamide, mosapride, did not appear to have electrophysiological features of relevance for induction of torsades de pointes in common with cisapride.  相似文献   

15.
BACKGROUND: Myocardial sympathetic activity is increased in heart failure. We tested the hypothesis that norepinephrine (NE) stimulates apoptosis in adult rat ventricular myocytes in vitro. METHODS AND RESULTS: Myocytes were exposed to NE alone (10 micromol/L), NE+propranolol (2 micromol/L), NE+prazosin (0.1 micromol/L), or isoproterenol (ISO, 10 micromol/L) for 24 hours. NE and ISO decreased the number of viable myocytes by approximately 35%. This effect was completely blocked by the beta-adrenergic antagonist propranolol but was not affected by the alpha1-adrenergic antagonist prazosin. NE increased DNA laddering on agarose gel electrophoresis and increased the percentage of cells that were stained by terminal deoxynucleotidyl transferase-mediated nick end-labeling from 5.8+/-1. 0% to 21.0+/-2.3% (P<0.01; n=4). NE likewise increased the percentage of apoptotic cells with hypodiploid DNA content as assessed by flow cytometry from 7.8+/-0.7% to 16.7+/-2.2% (P<0.01; n=6), and this effect was abolished by propranolol but not prazosin. ISO and forskolin (10 micromol/L) mimicked the effect of NE, increasing the percentage of apoptotic cells to 14.7+/-1.9% and 14. 4+/-2.2%, respectively. NE-stimulated apoptosis was abolished by the protein kinase A inhibitor H-89 (20 micromol/L) or the voltage-dependent calcium channel blockers diltiazem and nifedipine. CONCLUSIONS: NE, acting via the ss-adrenergic pathway, stimulates apoptosis in adult rat cardiac myocytes in vitro. This effect is mediated by protein kinase A and requires calcium entry via voltage-dependent calcium channels. NE-stimulated apoptosis of cardiac myocytes may contribute to the progression of myocardial failure.  相似文献   

16.
Insulin secretion induced by cholecystokinin-8 (CCK-8) was recently suggested to involve phospholipase A2 (PLA2) activation. In this study, we examined whether CCK-8 stimulates the Ca2+-independent form of PLA2 in isolated rat islets, in comparison with stimulation by the PLA2-activating cholinergic agonist carbachol. We found that CCK-8 (100 nmol/l; 5.6 mmol/l glucose) induces lysophosphatidylcholine accumulation from [3H]palmitate-prelabeled islets (170 +/- 39%; P = 0.003) as well as arachidonic acid (AA) efflux from [3H]AA-prelabeled islets (190 +/- 13%; P < 0.001), and that p-amylcinnamoylantranilic acid (ACA) (50 micromol/l)-mediated PLA2 inhibition reduces CCK-8-induced AA efflux (52 +/- 11%; P = 0.001) and insulin secretion (67 +/- 16%; P < 0.001). Neither the Ca2+ channel antagonist verapamil (100 micromol/l) nor the Ca2+ATPase inhibitor thapsigargin (1 micromol/l) affected CCK-8-induced AA efflux and insulin secretion. Furthermore, despite removal of extracellular Ca2+, CCK-8 still increased AA efflux (48 +/- 14%; P = 0.006) and insulin secretion (105 +/- 46%; P = 0.025). In contrast, carbachol (100 micromol/l)-stimulated AA efflux was reduced by verapamil by 36 +/- 6% (P < 0.001) and abolished by removal of extracellular Ca2+. Overnight protein kinase C (PKC) downregulation by 12-O-tetradecanoyl phorbol-13-acetate (TPA) (500 nmol/l) reduced CCK-8-induced AA efflux (45 +/- 12%; P = 0.003) and insulin secretion (40 +/- 16%; P = 0.020). No additive action regarding either AA formation or insulin secretion was seen by combining TPA overnight and ACA, which implies the involvement of an additional PLA2- and PKC-independent signaling mechanism. The results show that CCK-8, in contrast to carbachol, activates Ca2+-independent PLA2 in islets and that the PLA2-activating capacity of CCK-8 is partly PKC dependent. Hence, Ca2+-independent PLA2 seems important for the insulinotropic effect of CCK-8, but not for that of carbachol.  相似文献   

17.
1. The role of bradykinin receptors in the regulation of sympathetic transmitter release was investigated in primary cultures of neurones dissociated from superior cervical ganglia of neonatal rats. These cultures were loaded with [3H]-noradrenaline and the outflow of radioactivity was determined under continuous superfusion. 2. Bradykinin (100 nmol l[-1] applied for 10 min) caused a transient increase in tritium outflow that reached a peak within four minutes after the beginning of the application and then declined towards the baseline, despite the continuing presence of the peptide. ATP (100 micromol l[-1]) and nicotine (10 micromol l[-1]) caused elevations in 3H outflow with similar kinetics, whereas outflow remained elevated during a 10 min period of electrical field stimulation (0.5 ms, 50 mA, 50 V cm[-1], 1.0 Hz). 3. When bradykinin was applied for periods of 2 min, the evoked 3H overflow was half-maximal at 12 nmol l(-1) and reached a maximum of 2.3% of cellular radioactivity. The preferential B1 receptor agonist des-Arg9-bradykinin failed to alter 3H outflow. The B2 receptor antagonists, [D-Phe7]-bradykinin (1 micromol l[-1]) and Hoe 140 (10 nmol l[-1]), per se did not alter 3H outflow, but shifted the concentration-response curve for bradykinin-evoked 3H overflow to the right by a factor of 7.9 and 4.3, respectively. 4. Bradykinin-induced overflow was abolished in the absence of extracellular Ca2+ and in the presence of either 1 micromol l(-1) tetrodotoxin or 300 micromol l(-1) Cd2+, as was electrically-induced overflow. Activation of alpha2-adrenoceptors by 1 micromol l(-1) UK 14,304 reduced both bradykinin- and electrically-triggered overflow. The Ca2+-ATPase inhibitor thapsigargin (0.3 micromol l[-1]) failed to alter either type of stimulated overflow. Caffeine (10 mmol l[-1]) enhanced bradykinin-induced overflow, but reduced overflow triggered by electrical field stimulation. 5. Inclusion of Ba2+ (0.1 to 1 mmol l[-1]) in the superfusion medium enhanced electrically induced overflow by approximately 100% and potentiated bradykinin-triggered overflow by almost 400%. Application of 1 mmol l(-1) Ba2+ for periods of 2 min triggered 3H overflow, and this overflow was abolished by 1 micromol l(-1) tetrodotoxin and enhanced by 10 mmol l(-1) caffeine. In contrast, inclusion of tetraethylammonium (0.1 to 1 mmol l[-1]) in the superfusion buffer caused similar increases of bradykinin- and electrically evoked 3H overflow (by about 100%), and tetraethylammonium, when applied for 2 min, failed to alter 3H outflow. 6. Treatment of cultures with 100 ng ml(-1) pertussis toxin caused a significant increase in bradykinin-, but not in electrically-, evoked tritium overflow. Treatment with 100 ng ml(-1) cholera toxin reduced both types of stimulated 3H overflow. 7. These data reveal bradykinin as a potent stimulant of action potential-mediated and Ca2+-dependent transmitter release from rat sympathetic neurones in primary cell culture. This neurosecretory effect of bradykinin involves activation of B2-receptors, presumably linked to pertussis- and cholera toxin-insensitive G proteins, most likely members of the Gq family. Results obtained with inhibitors of muscarinic K+ (KM) channels, like caffeine and Ba2+, indicate that the secretagogue action of bradykinin probably involves inhibition of these K+ channels.  相似文献   

18.
The effects of adrenoceptor agonists on the transepithelial Cl- conductance (GCl) in the skin of several amphibian species, both toads and frogs, were studied. Epinephrine (Epi) from the serosal side selectively and reversibly inhibited the voltage-activated GCl in toad skin and the short-circuit GCl in frog skin. The main effects of activation of the adrenoceptors must reside in the skin epithelium and not in the glands, since measurements were made both from intact skins and split epithelia with essentially the same results. Effective concentrations of Epi were variable among individual tissues. GCl was reduced to 34+/-17% (n=46) with 1 micromol/l Epi, but in some tissues 0.1 micromol/l inhibited more than 80% of GCl, whereas some preparations were little influenced at >3 micromol/l Epi. The affected receptor type was identified by the use of the alpha1-agonist phenylephrine, which mimicked the response of Epi at concentrations above 30 micromol/l, whereas the alpha2-agonists xylazine and iodoclonidine had no effect at supramaximal concentrations. Prazosin, a specific alpha1-antagonist, reduced or eliminated the inhibition by Epi, but the response pattern suggests a low affinity. The alpha2-antagonist yohimbine, at concentrations 100 micromol/l CPT-cAMP). Preincubation of the serosal medium with Ca2+-free solution (in the presence of 2 mmol/l EGTA) for extended periods of time (>30 min) eliminated the response to Epi. It is concluded that alpha1-adrenoceptors participate in the physiological control of voltage-activated Cl- conductance in amphibian skin epithelium via modulation of intracellular Ca2+, presumably by efflux from intracellular stores.  相似文献   

19.
OBJECTIVE: In the present study we investigated whether low density lipoprotein is able to enhance the growth promoting effects of thrombin in vascular smooth muscle cells. METHODS: DNA synthesis was examined by measurement of the [3H]thymidine incorporation into the cell DNA. Cell count was measured with a Neubauer cell box. Thrombin receptor mRNA was determined by Northern blotting. Ca2+ was measured by the fura 2-method. RESULTS: Thrombin (5 nmol/l), thrombin receptor activating protein (3 mumol/l) and low density lipoprotein (33 nmol/l) induce a 652 +/- 80%, 593 +/- 80% and a 316 +/- 60% increase in [3H]thymidine incorporation into DNA (mean +/- SD, n = 3), respectively. A coincubation of thrombin or thrombin receptor activating protein with low density lipoprotein led to a 1245 +/- 160% or 1200 +/- 40% increase of DNA synthesis (mean +/- SD, n = 3). Thus, coincubation of low density lipoprotein and thrombin causes a synergistic rather than an additive mitogenic effect on smooth muscle cells. Thrombin and low density lipoprotein induced a 22 +/- 8.4% and a 29% +/- 6% increase in cell number, respectively. Simultaneous treatment of vascular smooth muscle cells with thrombin and low density lipoprotein caused a 63 +/- 14% increase in cell number (mean +/- SD, n = 3). To further elucidate the underlying mechanism, we studied the effect of low density lipoprotein on the expression of thrombin receptor mRNA. Low density lipoprotein caused a 2.5-fold increase of thrombin receptor mRNA within 24 h, as assessed by Northern analysis. Preincubation of cells for 24 h with 33 nmol/l low density lipoprotein resulted in an elevation of the thrombin-induced increase in cytosolic free Ca2+ concentration from 538 +/- 54 to 923 +/- 75 nmol/l (mean +/- SD, n = 4). CONCLUSION: In summary, low density lipoprotein may enhance the mitogenic effect of thrombin probably by an up-regulation of thrombin receptor gene expression in vascular smooth muscle cells or by an elevation of the thrombin-induced increase in cytosolic free Ca2+ concentration.  相似文献   

20.
The low affinity binding sites identified in crude membranes from different excitable tissues with the dihydropyridine (DHP) calcium (Ca2+) channel ligands have confused researches in the field of Ca2+ channels as they can represent low affinity state(s) of the DHP receptor, or they can be labelled with DHP-type Ca2+ channel ligands. The aim of this communication was to provide more evidence for the existence of separate DHP binding sites on the surface of cultured green monkey renal cells (GMRC). The saturation ligand binding experiments with [3H]-nitrendipine (NTP) and photoaffinity labelling studies with (-)-[3H]-azidopine (AZI) were performed in order to identify and further characterize the DHP receptor on cultured GMRC. Specific high affinity sites identified on GMRC with [3H]-NTP (Bmax = 0.78 +/- 0.03 pmol/mg protein and KD = 0.06 +/- 0.1 nmol/l in native cells) and photolabelled with AZI represent DHP receptor on L-type Ca2+ channels. The low affinity binding sites photolabelled with AZI on GMRC (9.84 +/- 2.4 pmol/mg protein and KD = 3.21 +/- 1.25 nmol/l in native cells) were significantly increased after preincubation of GMRC with low concentrations of DHPs nitrendipine and nisoldipine. Preincubation of GMRC with Ca2+ channel agonist (-)BAYK 8644 significantly reduced specific photolabelling with AZI on GMRC and increased low affinity labelling. Preincubation of (+)BAYK 8644 was without any effect. Niguldipine (DHP with the voluminous substituent on the port side of the DHP ring) partially inhibited specific photolabelling with AZI on GMRC and also partially reduced the maximal number of low affinity binding sites labelled with AZI. Our results support the hypothesis of separate subsites in the region of DHP receptor of GMRC and the existence of the "marginal" photolabelling of specific DHP binding sites identified on Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号