首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas–solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal kθ–τθ equations, in addition to the hydrodynamic k–τ transport, and accounts for the particle–particle and particle–wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.  相似文献   

2.
Detailed measurements in a developed particle-laden horizontal channel flow (length 6 m, height 35 mm, the length is about 170 channel heights) are presented using phase-Doppler anemometry for simultaneous determination of air and particle velocity. The particles were spherical glass beads with mean diameters in the range of 60 µm-1 mm. The conveying velocity could be varied between about 10 m/s and 25 m/s, and the particle mass loading could reach values of about 2 (the mass loading is defined as the ratio of particle to gas phase mass flow rates), depending on particle size. For the first time, the degree of wall roughness could be modified by exchanging the wall plates. The influence of these parameters and the effect of inter-particle collisions on the profiles of particle mean and fluctuating velocities and the normalised concentration in the developed flow were examined. It was shown that wall roughness decreases the particle mean velocity and enhances fluctuating velocities due to irregular wall bouncing and an increase in wall collision frequency, i.e. reduction in mean free path. Thereby, the larger particles are mainly more uniformly distributed across the channel, and gravitational settling is reduced. Both components of the particle velocity fluctuation were reduced with increasing mass loading due to inter-particle collisions and the momentum loss involved. Moreover, the effect of the particles on the air flow and the turbulent fluctuations was studied on the basis of profiles in the developed flow and turbulence spectra determined for the streamwise velocity component. In addition to the effect of particle size and mass loading on turbulence modulation, the influence of wall roughness was analysed. It was clearly shown that increasing wall roughness also results in a stronger turbulence dissipation due to two-way coupling.  相似文献   

3.
This paper presents a review of authors' collective works in the field of two-phase flow modeling done in the past few decades. The paper is aimed at the construction of mathematical models for simulation of particle-laden turbulent flows. A kinetic equation was obtained for the probability density function (PDF) of the particle velocity distribution in turbulent flows. The proposed kinetic equation describes both the interaction of particles with turbulent eddies of the carrier phase and particle-particle collisions. This PDF equation is used for the derivation of different schemes describing turbulent momentum transfer in the dispersed particle phase. The turbulent characteristics of the gaseous phase are calculated on the basis of the k - turbulence model with a modulation effect of particles on the turbulence.

The constructed models have been applied to the calculation of various two-phase gas-particle turbulent flows in jets and channels as well as particle deposition in tubes and separators. For validating the theoretical and numerical results, a wide range of comparisons with experimental data from Russian and foreign sources has been done.  相似文献   


4.
This work examines the effect of inter-particle collisions on the motion of solid particles in two-phase turbulent pipe and channel flows. Two mechanisms for the particle–particle collisions are considered, with and without friction sliding. Based on these collision mechanisms, the correlations of the various velocity components of colliding particles are obtained analytically by using an averaging procedure. This takes into account three collision coordinates, two angles and the distance between the centers of colliding particles. The various stress tensor components are obtained and then introduced in the mass, linear momentum and angular momentum equations of the dispersed phase. The current approach applies to particle–particle collisions that result from both the average velocity difference and the turbulent velocity fluctuations. In order to close the governing equations of the dispersed phase, the pseudo-viscosity coefficients are defined and determined by the time of duration of the inter-particle collision process. The model is general enough to apply to both polydisperse and monodisperse particulate systems and has been validated by comparisons with experimental data.  相似文献   

5.
The particle dispersion characteristics in a confined swirling flow with a swirl number of approx. 0.5 were studied in detail by performing measurements using phase-Doppler anemometry (PDA) and numerical predictions. A mixture of gas and particles was injected without swirl into the test section, while the swirling airstream was provided through a co-flowing annular inlet. Two cases with different primary jet exit velocities were considered. For these flow conditions, a closed central recirculation bubble was established just downstream of the inlet.

The PDA measurements allowed the correlation between particle size and velocity to be obtained and also the spatial change in the particle size distribution throughout the flow field. For these results, the behaviour of different size classes in the entire particle size spectrum, ranging from about 15 to 80 μm, could be studied, and the response of the particles to the mean flow and the gas turbulence could be characterized. Due to the response characteristics of particles with different diameters to the mean flow and the flow turbulence, a considerable separation of the particles was observed which resulted in a streamwise increase in the particle mean number diameter in the core region of the central recirculation bubble. For the lower particle inlet velocity (i.e. low primary jet exit velocity), this effect is more pronounced, since here the particles have more time to respond to the flow reversal and the swirl velocity component. This also gave a higher mass of recirculating particle material.

The numerical predictions of the gas flow were performed by solving the time-averaged Navier-Stokes equations in connection with the well known kε turbulence model. Although this turbulence model is based on the assumption of isotropic turbulence, the agreement of the calculated mean velocity profiles compared to the measured gas velocities is very good. The gas-phase turbulent kinetic energy, however, is considerably underpredicted in the initial mixing region. The particle dispersion characteristics were calculated by using the Lagrangian approach, where the influence of the particulate phase on the gas flow could be neglected, since only very low mass loadings were considered. The calculated results for the particle mean velocity and the mass flux are also in good agreement with the experiments. Furthermore, the change in the particle mean diameter throughout the flow field was predicted approximately, which shows that the applied simple stochastic dispersion model also gives good results for such very complex flows. The variation of the gas and particle velocity in the primary inlet had a considerable impact on the particle dispersion behaviour in the swirling flow and the particle residence time in the central recirculation bubble, which could be determined from the numerical calculations. For the lower particle inlet velocity, the maximum particle size-dependence residence time within the recirculation region was considerably shifted towards larger particles.  相似文献   


6.
扩展重要抽样法及其在平尾转轴可靠性分析中的应用   总被引:3,自引:0,他引:3  
提出了扩展重要抽样法,用以计算结构系统的多个失效模式中含有不全相同基本随机变量时的系统失效概率。通过构造扩展重要抽样法的抽样密度函数,给出该方法失效概率的估计值,以及其方差和变异系数的计算公式。并将此方法用于某型飞机平尾转轴的可靠性分析,算例结果表明其优越性。  相似文献   

7.
Numerical prediction of locally forced turbulent boundary layer   总被引:3,自引:0,他引:3  
An unsteady numerical simulation was performed to analyze flow structure behind a local suction/blowing in a flat-plate turbulent boundary layer. The local forcing was given to the boundary layer flow by means of a sinusoidally oscillating jet. A version of the unsteady k––fμ model [Fluid Dyn. Res. 26 (6) (2000) 421] was employed. The Reynolds number based on the momentum thickness was about Reθ=1700. The forcing frequency was varied in the range 0.011f+0.044 with a fixed forcing amplitude Ao=0.4. The predicted results were compared and validated with the experimental data. It was shown that the unsteady locally forced boundary layer flow is predicted well by the k––fμ model. The time-dependent numerical flow visualizations were demonstrated during one period of the local forcing. The effect of the pitch angle of local forcing on the reduction of skin friction was examined.  相似文献   

8.
Possible stable subharmonic solutions of the equation
ÿ − k(1 + 2cyy2)ÿ + Y = bkμ cos μt, c > 0
, klarge, are discussed by the techniques used by J.E. Littlewood for van der Pol's equation in Acta Math. 97 (1957), that is the case of the above equation with c = 0 and
, k large. Their variation as c increases is also considered briefly.  相似文献   

9.
Particle/droplet/bubble fluctuation and dispersion are important to mixing, heat and mass transfer, combustion and pollutant formation in dispersed multiphase flows, but are insufficiently studied before the 90 years of the last century. In this paper, the present author reports his systematic studies within nearly 20 years on two-phase turbulence in dispersed multiphase flows, including particle fluctuation in dilute gas-particle and bubble-liquid flows, particle-wall collision effect, coexistence of particle turbulence and inter-particle collisions, fluid turbulence modulation due to the particle wake effect and validation of the two-fluid RANS modeling using large-eddy simulation.  相似文献   

10.
The purpose of this paper is twofold: (i) to present statistical models that describe particle–turbulence interactions as well as particle–particle collisions and (ii) to gain a better understanding of the effect of inter-particle collisions on transport, deposition, and preferential concentration of heavy particles in turbulent channel flows. The models presented are based on a kinetic equation for the probability density function of the particle velocity distribution in anisotropic turbulent flow. The model predictions compare reasonable well with numerical simulations and properly reproduce the crucial trends of computations.  相似文献   

11.
The mechanisms responsible for the initial growth of sand waves on the surface of a settled layer of particles are studied experimentally and theoretically. Experiments employ water-glycerin solutions of 1–14 cP and glass spheres (s = 2.4 g/cm3) that are either 100 or 300 μm in diameter. The particle Reynolds number and Shields parameter are of order one and the flow Reynolds number is of order 1000 to 10,000. Experimentally obtained regime maps of sand wave behavior and data on the wavelengths of the sand waves that first appear on the surface of the settled bed are presented. Turbulence in the clear liquid is not necessary for formation of waves and there is no dramatic change in behavior as the flowrate is increased across the turbulent transition. The initial wavelength varies as the Fronde number to the first power. Because a flowing suspension phase is observed before waves form, linear stability analysis of the clear-layer—suspension-layer cocurrent two-phase flow is presented. The suspension phase is modeled as a continuum that has an either constant or exponentially increasing viscosity. Neither of the models correctly predicts the wavelength for the first observed waves, their growth rate or their speed. However, the initial wavelength is found to agree well with the trajectory length for a saltating particle obtained from a model for forces on individual particles.  相似文献   

12.
We study the dynamics of a massless particle in an annular configuration of N bodies, N − 1 of which have equal masses m and are located in equal distances on a fictitious circle and one has mass βm and is located at the center of the circle. Our interest is focused on the bifurcation points from planar to three-dimensional families of symmetric periodic orbits in the above problem. We study numerically the evolution of these bifurcation points with respect to the variation of the mass parameter β. In particular we investigate the continuous evolution of bifurcation points for values of β from 2 up to 1000. The two distinct cases of the system’s behavior at β = 2 and 1000 are examined comparatively and various conclusions are drawn regarding the overall dynamical evolution of the three-dimensional system as the relative mass of the central body grows.  相似文献   

13.
For periodic arrays of spheres the permeability is obtained numerically as a function of the dimensionless wave number kD in the flow direction, where D is the sphere diameter, k = 2π/λ is the wave number, and λ is the distance between the spheres in the flow direction. Our numerical results for the solids fraction of 0.45 show that for kD < 6.5 the permeability increases with increasing kD. But, it decreases for 6.5 < kD < 8.5 and reaches a local minimum at kD  8.5, and then increases again with increasing kD. Since the Fourier spectrum of the area fraction is zero for kD = 8.98, this result suggests that the area fraction plays an important role in determining the dependence of permeability on the distance between the spheres in the flow direction. For smaller solids fractions, the positions of the local maximum and minimum of permeability shift to slightly smaller kD’s.  相似文献   

14.
Particle-turbulence interaction in a boundary layer   总被引:15,自引:0,他引:15  
Particle-turbulence interaction in wall turbulent flows has been studied. A series of experiments varying particle size, particle density, particle loading and flow Re has been conducted. The results show that the larger polystyrene particles (1100 μm) cause an increase in the number of wall ejections, giving rise to an increase in the measured values of the turbulence intensities and Reynolds stresses. On the other hand, the smaller polystyrene particles (120 μm) bring about a decrease in the number of wall ejections, causing a decrease in the measured intensities and Reynolds stresses. These effects are enhanced as the particle loading is increased. It was also found that the heavier glass particles (88 μm) do not bring about any significant modulation of turbulence. In addition, measurements of the burst frequency and the mean streak-spacing show no significant change with increase in particle loading. Based on these observations, a mechanism of particle transport in wall turbulent flows has been proposed, in which the particles are transported (depending on their size, density and flow Re) by the bursting events of the wall regions.  相似文献   

15.
16.
Predicting turbulent flow in a staggered tube bundle   总被引:2,自引:0,他引:2  
This paper presents the results of calculations performed for the turbulent, incompressible flow around a staggered array of tubes for which carefully obtained experimental results are available as part of an established ERCOFTAC-IAHR test case. The Reynolds-averaged Navier–Stokes equations are solved using a pressure-based finite volume algorithm, using collocated cell vertex store on an unstructured and adaptive mesh of tetrahedra. Turbulence closure is obtained with a truncated form of a low-Reynolds number k model developed by Yang and Shih. The computational domain covers all seven rows of tubes used in the experimental study and periodic flow is allowed to develop naturally. The results of the computations are surprisingly good and compare favourably with results obtained by others using a wide range of alternative k models for a single cylinder with periodic inflow and outflow boundaries on structured meshes.  相似文献   

17.
An experimental investigation is performed on a fully developed turbulent channel flow with local injection through a porous strip. The Reynolds number based on the channel half-width was set to 5000. In addition to the no blowing case, measurements are made for three different blowing rates σ = 0.22, 0.36 and 0.58 (where σ is the ratio of momentum flux gain due to the blowing and momentum flux of the incoming channel flow). Measurements carried out with hot-wire anemometry reveal that injection strongly affects both the velocity profiles and the turbulence characteristics. The injection decreases the skin friction coefficient and increases all the Reynolds stresses downstream the blowing strip. The turbulence structure and the bursting phenomena were examined using space-time correlations measurements and conditional analysis. It is found that the injection increases the frequency of occurrence of the bursts.  相似文献   

18.
To investigate the behaviour of inter-particle collision and its effects on particle dispersion, direct numerical simulation of a three-dimensional two-phase turbulent jet was conducted. The finite volume method and the fractional-step projection algorithm were used to solve the governing equations of the gas phase fluid and the Lagrangian method was applied to trace the particles. The deterministic hard-sphere model was used to describe the inter-particle collision. In order to allow an analysis of inter-particle collisions independent of the effect of particles on the flow, two-way coupling was neglected. The inter-particle collision occurs frequently in the local regions with higher particle concentration of the flow field. Under the influence of the local accumulation and the turbulent transport effects, the variation of the average inter-particle collision number with the Stokes number takes on a complex non-linear relationship. The particle distribution is more uniform as a result of inter-particle collisions, and the lateral and the spanwise dispersion of the particles considering inter-particle collision also increase. Furthermore, for the case of particles with the Rosin–Rammler distribution (the medial particle size is set d50 = 36.7 μm), the collision number is significantly larger than that of the particles at the Stokes number of 10, and their effects on calculated results are also more significant.  相似文献   

19.
Computational and experimental study of annular photo-reactor hydrodynamics   总被引:1,自引:0,他引:1  
The performance of ultraviolet (UV) reactors used for water treatment is greatly influenced by the reactor hydrodynamics due to the non-homogeneity of the radiation field. Reliable modeling of the reactor flow structures is therefore crucial for the design process. In this study, the turbulent flow through two characteristic annular UV-reactor configurations, with inlets concentric (L-shape) and normal (U-shape) to the reactor axis, was investigated through computational fluid dynamic (CFD). The modeling results were evaluated with the velocity profiles from particle image velocimetry (PIV) experiments. The influence of mesh structure and density, as well as three turbulence models: Standard κ, Realizable κ, and Reynolds stress model (RSM), on the simulation results were evaluated. Mesh-independent solutions were achieved at mean cell volumes of 5 × 10−9 m3. The Realizable κ displayed the best overall match to the experimental PIV measurements. In general, the CFD models showed a close agreement with the experimental data for the majority of the reactor domain and captured the influences of reactor configuration and internal reactor structures on the flow distribution. The validated CFD hydrodynamic models could be integrated with kinetic and radiation distribution models for UV-reactor performance simulation.  相似文献   

20.
A three-dimensional, Eulerian simulation was developed to describe isothermal, two-phase flow of the continuous (water) and dispersed (solid particles) phases in a rectangular spouted vessel. The mass and momentum conservation equations for each phase were solved using the finite volume technique, which treats each phase separately, while coupling them through drag, turbulence, and energy dissipation due to particle fluctuations. Particle–particle interactions via friction were also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号