首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
姜谦  张衍  刘和 《微生物学通报》2019,46(8):1998-2008
添加导电碳颗粒能够促进厌氧消化过程稳定性、底物降解率以及产沼气品质的同步提高。本文总结了以活性炭和生物炭为代表的导电碳颗粒对城市污泥厌氧消化的影响,探讨了导电碳颗粒促进城市污泥厌氧消化的机理,阐述了导电碳颗粒介导的微生物直接种间电子传递(Directinterspecies electrontransfer,DIET)在强化污泥厌氧消化中的作用机制,分析了复杂厌氧消化体系中微生物DIET互营关系的研究现状,同时对导电碳颗粒的物理化学特性及其对污泥厌氧消化产甲烷的影响进行了分析,最后对未来导电碳颗粒促进城市污泥厌氧消化的研究进行了展望。  相似文献   

2.
姜杰  冯旗  贺鹏宸  彭兆丰 《微生物学通报》2023,50(10):4694-4704
微生物胞内产生的电子转移到其他电子受体而获得能量的过程称为微生物胞外电子传递,其中,另一微生物作为电子受体时发生的电子传递称为微生物种间电子传递。根据微生物种间电子传递机制,可分间接种间电子传递和种间直接电子传递。由于种间直接电子传递不需要其他物质介导,因此较间接种间电子传递效率更高、能量利用更高。本文系统阐述了微生物进行胞外电子传递的机理及应用,重点分析了种间直接电子传递机理,并概述种间直接电子传递应用领域,为寻找更多电连接的微生物群落以及应用微生物提供参考。  相似文献   

3.
微生物纳米导线的导电机制及功能   总被引:1,自引:0,他引:1  
刘星  周顺桂 《微生物学报》2020,60(9):2039-2061
微生物种间直接电子传递是指在厌氧条件下,一种微生物将电子直接传递给另外一种微生物,将两种不同微生物的代谢途径耦合在一起,以达到互养共生的目的。细菌-古菌之间的直接电子传递是其物质转换与能量代谢的新途径和新调控机制,直接参与甲烷的合成以及与硫酸盐还原耦合的厌氧甲烷氧化,在驱动碳和硫的地球化学转化与循环中起着十分重要的作用。目前研究结果认为细菌-古菌之间的直接电子传递主要是由含多个血红素的C型细胞色素介导的,这些细胞色素能形成不间断的胞外电子传递途径,以电子多步跃迁机制在细菌和古菌的细胞质膜之间传递电子。  相似文献   

4.
一直以来氢气和甲酸被认为是微生物间电子传递的中间电子传递体.近年来的研究发现,微生物之间可以通过种间直接电子传递(DIET)来替代氢气/甲酸传递.DIET作为一种新发现的微生物间电子传递途径,其电子传递效率要高于传统的种间氢气/甲酸传递.DIET这一新发现改变了微生物互营生长代谢必须依赖氢气或甲酸等电子载体的传统认识,...  相似文献   

5.
种间电子传递可促进微生物发生共代谢,因而在地球生物化学循环和环境污染修复中具有重要意义。根据电子传递方式的不同可将种间电子传递分为直接种间电子传递(direct interspecies electron transfer,DIET)和间接种间电子传递(mediated interspecies electron transfer,MIET),其中,直接种间电子传递由于易发生、效率高而受到更加广泛的关注。本文总结了近年来关于种间电子传递的研究进展,阐述了种间电子传递的途径,比较了DIET和MIET的优缺点,并对开发更多具有种间电子传递功能的微生物提出了建议,以期加深人们对于种间电子传递的理解,并对未来该领域的研究提供参考。  相似文献   

6.
微生物的电子传递过程在生命进化和生物地球化学循环中发挥着关键作用。近年来,随着微生物电子传递研究的深入开展,微生物纳米导线、导电生物被膜及种间电子传递等多种新型的微生物胞外电子传递机制不断被发现,微生物电子传递的距离也从纳米级拓展至厘米级。这些微生物的长距离电子传递过程环环相扣、相互协同,从而构成长距离电子传递网络,并在物质循环和能量转化中共同发挥作用。微生物长距离电子传递网络的结构功能及其调控机制已成为多个学科共同关注的焦点。本文以电子传递的距离为主线,对不同尺度的微生物长距离电子传递过程及网络研究的新进展进行综述,包括纳米尺度的电子传递网络(周质空间和外膜表层)、微米至毫米尺度的电子传递网络(纳米导线、细胞间电子和导电生物被膜)、厘米尺度的电子传递网络(电缆细菌)等,并分析了该研究现存的主要问题和下一步的发展方向,以期为进一步推进微生物长距离电子传递网络理论和应用研究提供科学参考。  相似文献   

7.
互营氧化产甲烷微生物种间电子传递研究进展   总被引:4,自引:1,他引:3  
甲烷是重要的温室气体,也是典型的可再生性生物质能源。目前约70%的大气甲烷排放来源于产甲烷微生物过程。在产甲烷环境中,产甲烷菌与互营细菌形成互营关系,从而克服有机质厌氧分解反应的热力学能垒,实现短链脂肪酸和醇类物质的互营氧化产甲烷过程。该过程中,种间电子传递是关键步骤。本文首先概述了甲烷的研究意义及微生物互营降解有机质产甲烷的过程,然后分别综述了种间H2转移、种间甲酸转移和种间直接电子传递这3种种间电子传递机制的起源、发展、研究现状和未来所需要解决的研究问题。  相似文献   

8.
微生物强化采油(microbial enhanced oil recovery,MEOR)是近年来在国内外发展迅速的一项提高原油采收率技术。微生物在油藏中高效生产表面活性剂等驱油物质是微生物采油技术成功实施的关键之一。然而,油藏的缺/厌氧环境严重影响好氧表面活性剂产生菌在油藏原位的生存与代谢活性;油藏注空气会增加开采成本,且注入空气的作用时效和范围难以确定。因此,开发厌氧产表面活性剂菌种资源并强化其驱油效率对于提高原油采收率具有重要意义。本文综述了国内外近年来利用厌氧产表面活性剂微生物提高原油采收率的研究进展,简述了微生物厌氧产表面活性剂的相关驱油机理、菌种资源开发现状以及油藏原位驱油应用进展,并对当前的研究提出了一些思考。  相似文献   

9.
为探究生物电化学强化厌氧氨氧化(anaerobic ammonia oxidation,anammox)脱氮作用过程,采用双室微生物电解池(microbial electrolysis cell,MEC)富集电活性微生物,构建耦合厌氧氨氧化阴极的生物电化学系统。具体地,在外加0.2 V电压条件下改变不同总氮进水浓度于30°C进行暗培养批次实验研究,结合循环伏安法、电化学阻抗谱、高通量测序方法等多种表征手段研究了强化脱氮机理。结果表明,在初始总氮浓度分别为200、300和400 mg/L时对应获得了96.9%±0.3%、97.3%±0.4%和99.0%±0.3%的总氮去除率,且阴极电极生物膜表现出良好的电化学活性。高通量测序结果表明外加电压富集了除厌氧氨氧化菌以外的其他脱氮功能菌群:反硝化菌(Denitratisoma)、Limnobacter和氨氧化菌SM1A02和Anaerolineaceae、亚硝化菌(Nitrosomonas europaea)和硝化螺菌属(Nitrospira)等,这些具有电化学活性的微生物构成了体系的氨氧化胞外产电菌(ammonium oxidizing exoelectrogens,AOE)和反硝化电养菌(denitrifying electrotrophs,DNE),它们连同厌氧氨氧化菌Candidatus Brocadia构成了系统的脱氮微生物群落结构。AOE和DNE的种间直接电子传递作用协同厌氧氨氧化是强化系统总氮去除的关键原因。  相似文献   

10.
产电微生物是微生物燃料电池、电解池和电合成等微生物电化学技术(Microbial electrochemical technologies,METs)的研究基础。产电微生物与电极界面间的胞外电子传递(Extracellular electron transfer,EET)效率低以及生物被膜形成能力弱限制了METs在有机物降解、电能生产、海水淡化、生物修复和生物传感等方面的应用。因此,强化产电微生物与电极界面间的相互作用是过去几年的主要研究热点。针对近年的研究,本文系统概述了通过改造产电微生物来增强微生物-电极间相互作用的各种策略,重点分析了这些策略的适用性和局限性,并展望了强化产电微生物-电极界面作用在微生物电化学技术利用方面的研究前景。  相似文献   

11.
Ammonia accumulation is a major inhibitory substance causing anaerobic digestion upset and failure in CH4 production. At high ammonia levels, CH4 production through syntrophic acetate oxidization (SAO) pathways is more tolerant to ammonia toxicity than the acetoclastic methanogenesis pathway, but the low CH4 production rate through SAO constitutes the main reason for the low efficiency of energy recovery in anaerobic digesters treating ammonia‐rich substrates. In this study, we showed that acetate fermentation to CH4 and CO2 occurred through SAO pathway in the anaerobic reactors containing a high ammonia concentration (5.0 g l?1 NH4+–N), and the magnetite nanoparticles supplementation increased the CH4 production rates from acetate by 36–58%, compared with the anaerobic reactors without magnetite under the same ammonia level. The mechanism of facilitated methanogenesis was proposed to be the establishment of direct interspecies electron transfer (DIET) for SAO, in which magnetite facilitated DIET between syntrophic acetate oxidizing bacteria and methanogens. High‐throughput 16S rRNA gene sequencing analysis revealed that the bacterial Geobacteraceae and the archaeal Methanosarcinaceae and Methanobacteriaceae might be involved in magnetite‐mediated DIET for SAO and CH4 production. This study demonstrated that magnetite supplementation might provide an effective approach to accelerate CH4 production rates in the anaerobic reactors treating wastewater containing high ammonia.  相似文献   

12.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

13.
Direct interspecies electron transfer (DIET) via electrically conductive pili (e-pili) and c-type cytochrome between acetogens and methanogens has been proposed as an essential pathway for methane production. Supplements of conductive materials have been extensively found to promote methane production in microbial anaerobic treatment systems. This review comprehensively presents recent findings of DIET and the addition of conductive materials for methanogenesis and summarizes important results through aspects of electron flux, organic degradation, and microbial interaction. Conductive materials improve DIET and methanogenesis by acting as either substitute of e-pili or electron conduit between e-pili and electron acceptors. Other effects of conductive materials such as the change of redox potential may also be important factors for the stimulation. The type and organic loading rate of substrates affect the occurrence of DIET and stimulating effects of conductive materials. Geobacter, which can participate in DIET, were less enriched in anaerobic systems cultivated with non-ethanol substrates, suggesting the existence of other syntrophs with the capability of DIET. The coupling of communication systems such as quorum sensing may be a good strategy to achieve the formation of biofilm or granule enriched with syntrophic partners capable of DIET.  相似文献   

14.
We investigated electron transfer processes of dissolved organic matter (DOM) and their potential importance for anaerobic heterotrophic respiration in a northern peatland. Electron accepting and donating capacities (EAC, EDC) of DOM were quantified using dissolved H2S and ferric iron as reactants. Carbon turnover rates were obtained from porewater profiles (CO2, CH4) and inverse modeling. Carbon dioxide was released at rates of 0.2–5.9 mmol m−2 day−1 below the water table. Methane (CH4) formation contributed <10%, and oxygen consumption 2% to 40%, leaving a major fraction of CO2 production unexplained. DOM oxidized H2S to thiosulfate and was reduced by dissolved ferric iron. Reduction with H2S increased the subsequently determined EDC compared to untreated controls, indicating a reversibility of the electron transfer. In situ redox capacities of DOM ranged from 0.2 to 6.1 mEq g−1 C (EAC) and from 0.0 to 1.4 mEq g−1 C (EDC), respectively. EAC generally decreased with depth and changed after a water table drawdown and rebound by 20 and −45 mEq m−2, respectively. The change in EAC during the water table fluctuation was similar to CH4 formation rates. In peatlands, electron transfer of DOM may thus significantly contribute to the oxidation of reduced organic substrates by anaerobic heterotrophic respiration, or by maintaining the respiratory activity of sulfate reducers via provision of thiosulfate. Part of the anaerobic electron flow in peat soils is thus potentially diverted from methanogenesis, decreasing its contribution to the total carbon emitted to the atmosphere.  相似文献   

15.
微生物能利用导电材料进行电子传递,提高种间电子传递效率。铁基纳米导电物质可以加速土壤及厌氧消化系统中微生物间的种间电子传递,促进有机废弃物的产甲烷过程。前期获得了厌氧丙酸富集培养系,互营丙酸氧化菌(Pelotomaculum schinkii)在培养系中占优势,本研究考察了10~4 000 mg/L 纳米铁氧化物对丙酸降解产甲烷过程的作用及微生物的影响。结果表明,低浓度的铁基纳米材料对丙酸降解有一定的促进作用,而高浓度会抑制产甲烷:10~1 000 mg/L纳米Fe3O4对产甲烷无明显影响,1 500~4 000 mg/L最大产甲烷速率抑制了26%~80%,延滞期增加了174%~222%;10~200 mg/L纳米Fe2O3使最大产甲烷速率提高了21%~29%,1 500~4 000 mg/L最大产甲烷速率抑制了48%~58%,延滞期增加了29%~85%。微生物群落解析结果表明,与对照相比,10~1 000 mg/L纳米Fe2O3使P. schinkii相对丰度略有增加,而4 000 mg/L纳米3O4/Fe2O3使P. schinkii的相对丰度下降了70.7%和55.9%,说明高浓度纳米铁氧化物会抑制P. schinkii的活性,导致丙酸降解及产甲烷速率降低。  相似文献   

16.
The microbial community structure and spatial distribution of microorganisms and their in situ activities in anaerobic granules were investigated by 16S rRNA gene-based molecular techniques and microsensors for CH4, H2, pH, and the oxidation-reduction potential (ORP). The 16S rRNA gene-cloning analysis revealed that the clones related to the phyla Alphaproteobacteria (detection frequency, 51%), Firmicutes (20%), Chloroflexi (9%), and Betaproteobacteria (8%) dominated the bacterial clone library, and the predominant clones in the archaeal clone library were affiliated with Methanosaeta (73%). In situ hybridization with oligonucleotide probes at the phylum level revealed that these microorganisms were numerically abundant in the granule. A layered structure of microorganisms was found in the granule, where Chloroflexi and Betaproteobacteria were present in the outer shell of the granule, Firmicutes were found in the middle layer, and aceticlastic Archaea were restricted to the inner layer. Microsensor measurements for CH4, H2, pH, and ORP revealed that acid and H2 production occurred in the upper part of the granule, below which H2 consumption and CH4 production were detected. Direct comparison of the in situ activity distribution with the spatial distribution of the microorganisms implied that Chloroflexi contributed to the degradation of complex organic compounds in the outermost layer, H2 was produced mainly by Firmicutes in the middle layer, and Methanosaeta produced CH4 in the inner layer. We determined the effective diffusion coefficient for H2 in the anaerobic granules to be 2.66 × 10−5 cm2 s−1, which was 57% in water.  相似文献   

17.
Although Sphagnum (moss)-dominated, northern peatlandecosystems harbor methane (CH4)-producing microorganisms(methanogens) and are a significant source of atmosphericCH4, rates of CH4 production vary widely amongdifferent systems. Very little work has been done to examine whetherconcentrations of cations and metal elements may account for thevariability. We examined rates of CH4 production in peat fromfive geographically and functionally disparateSphagnum-dominated peatlands by incubating peat samples invitro with and without additions of trace metals (Fe, Ni, Co) andbase cations (Ca, Li, Na). In peat from the most mineral poor sites, theaddition of metals and Na enhanced CH4 production beyond thatobserved in controls. The same treatments in mineral rich sites yieldedno effect or an inhibition of CH4 production. None of thetreatments affected anaerobic respiration, measured as CO2production, in the in vitro incubations of peat, except addedcitrate, suggesting that methanogens, and not the entire anaerobiccommunity, can be limited by the availability of metal elements andcations.  相似文献   

18.
Several anaerobic acetogenic, methanogenic, hydrogenogenic, and sulfate-reducing microorganisms are able to use the reductive acetyl-CoA (Wood-Ljungdahl) pathway to convert CO2 into biomass. The reductive acetyl-CoA pathway consists of two branches connected by the Co/Fe-containing corrinoid iron-sulfur protein (CoFeSP), which transfers a methyl group from a methyltransferase (MeTr)/methyltetrahydrofolate (CH3-H4 folate) complex to the reduced Ni-Ni-[4Fe-4S] cluster (cluster A) of acetyl-CoA synthase. We investigated the CoFeSP and MeTr couple of the hydrogenogenic bacterium Carboxydothermus hydrogenoformans and show that the two proteins are able to catalyze the methyl-group transfer reaction from CH3-H4 folate to the Co(I) center of CoFeSP. We determined the crystal structures of both proteins. The structure of CoFeSP includes the previously unresolved N-terminal domain of the large subunit of CoFeSP, revealing a unique four-helix-bundle-like architecture in which a [4Fe-4S] cluster is shielded by hydrophobic amino acids. It further reveals that the corrinoid and the [4Fe-4S] cluster binding domains are mobile, which is mandatory for the postulated electron transfer between them. Furthermore, we solved the crystal structures of apo-MeTr, CH3-H4-folate-bound MeTr, and H4-folate-bound MeTr, revealing a substrate-induced closure of the CH3-H4 folate binding cavity of MeTr. We observed three different conformations of Asn200 depending on the substrate bound in the active site, demonstrating its conformational modulation by hydrogen-bonding interactions with the substrate. The observed flexibility could be essential to stabilize the transition state during methyl-group transfer. The conformational space and role of Asn200 are likely conserved in homologous cobalamin-dependent MeTrs such as methionine synthase.  相似文献   

19.
Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3O4 concentration but was dismissed when Fe3O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA‐based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3O4 amendment. Collectively, our study demonstrated that the nanoFe3O4‐facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments.  相似文献   

20.
《Process Biochemistry》2014,49(12):2235-2240
The interaction of anaerobic dechlorinating cultures with soil and aquifer geochemical components is largely unknown, although this has potentially a major impact on the bioremediation of chlorinated solvent-contaminated sites. In this study, we found that addition of magnetite (Fe3O4) – the end-product of Fe(III)-reduction by dissimilatory iron reducing bacteria – to anaerobic dechlorinating cultures enhances the kinetics of trichloroethene dechlorination up to 1.5-times, compared to unamended controls. Specifically, a low concentration (approx. 10 mg/L as total Fe) of small size particles (200 nm-filtered) resulted in a greater stimulatory effect compared to the addition of a higher concentration (approx. 300 mg/L as total Fe) of unfiltered particles. Notably, Desulforomonas spp. were substantially enriched in microcosms supplemented with magnetite, whereas Dehalococcoides mccartyi spp. was found to be markedly inhibited or outcompeted. Multiple lines of evidence, including the direct visualization of microbial cells and magnetite particles via Confocal Laser Scanning Microscopy (CLSM), suggest that electrically conductive particles promoted the establishment of a cooperative metabolism, based on direct interspecies electron transfer, between dechlorinating and non-dechlorinating microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号