首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用射频磁控溅射方法制备了单层TiAlN、CrAlN复合薄膜以及不同调制周期和不同层厚比(lTiAlN/lCrAlN)的TiAlN/CrAlN纳米结构多层膜.薄膜采用X射线衍射仪、扫描电子显微镜、显微硬度仪进行表征.结果表明:TiAlN、CrAlN复合薄膜和TiAlN/CrAlN多层膜均为面心立方结构,呈(111)面择优取向.TiAlN/CrAlN多层膜的择优取向与调制周期和层厚比无关.层厚比为1的TiAlN/CrAlN多层膜的硬度依赖于调制周期,在调制周期为8 nm时,达到最大;固定TiAlN的厚度为4 nm,改变CrAlN层的厚度,在研究范围内,多层膜的硬度随着CrAlN层厚度的增加而增加.探讨了多层膜的致硬机制.TiAlN/CrAlN多层膜抗氧化温度比其组成单层膜高了近200 ℃,并讨论了其抗氧化机制.  相似文献   

2.
调制周期对CrAlN/ZrN纳米多层膜韧性的影响   总被引:1,自引:3,他引:1       下载免费PDF全文
目的研究调制周期对纳米多层膜性能的影响。方法采用磁控溅射方法制备了CrAlN与ZrN的固定厚度比为2.6,不同调制周期(Λ为6,8,10,20 nm)的CrAlN/ZrN纳米多层膜。利用场发射扫描电镜(FESEM)表征薄膜的形貌、结构。用Dektak150型台阶仪测薄膜表面粗糙度。用Agilent Technologies G200纳米压痕仪检测涂层的硬度和弹性模量。用划痕仪测薄膜/基材的结合力,同时,引入抗裂纹扩展系数(CPR)表征纳米多层膜的韧性。结果 CrAlN/ZrN纳米多层膜断面皆为穿晶柱状结构,调制周期为20 nm时,多层膜层与层之间的界面清晰;多层膜表面呈致密的花椰菜状,厚度均约为2μm。调制周期为8 nm时,硬度为20.4 GPa,进一步增大调制周期,硬度下降。调制周期为8 nm的多层膜临界载荷L_(c2)为18 N,CPR值为73.2,L_(c2)与CPR值均高于其他调制周期的多层膜。在临界载荷L_(c2)处,裂纹扩展导致薄膜发生了严重的片状剥落,露出了亮白的热轧钢基底,薄膜失去了保护作用。结论实验表明,在多层膜厚度、调制比不变的条件下,改变调制周期能够改变多层膜的韧性。随着调制周期的增大,韧性呈先上升、后下降的趋势。调制周期为8 nm时,纳米多层膜的硬度最高,韧性最好,综合性能良好。  相似文献   

3.
《铸造技术》2016,(5):918-921
采用真空电弧离子镀工艺在H13钢表面制备Ti Al N/Cr Al N复合涂层,利用划痕试验仪、盘式摩擦磨损试验机、金相显微镜和努氏硬度计分析Ti Al N/Cr Al N膜层的结合力和摩擦学性能,金相组织形貌和试样表面的显微硬度。结果表明,Ti Al N/Cr Al N复合薄膜表面组织分布均匀,结合致密,涂层与基体间的结合力是影响涂层承载能力的主要因素之一,Ti Al N复合涂层的摩擦性能优于H13基体和Cr Al N复合涂层的摩擦性能,Ti Al N/Cr Al N复合涂层的结合力分别为35 N和24 N,沉积有Ti Al N涂层试样表面摩擦系数最小,减摩效果最好,耐磨性能优越,并能有效地抵抗摩擦磨损。  相似文献   

4.
多层膜界面粗糙度的低角X射线衍射研究   总被引:4,自引:0,他引:4  
对磁控溅射方法制备的W/Si周期多层膜在X射线衍时仪上进行了低角X射线衍射实验,并用动力学理论分析了膜层的周期结构和界面粗糙度,在对实验谱线的拟合过程中,考虑了界面的不对称性、周期的随机涨落及系统偏差等因素对衍射强度的影响,并讨论了各个参量对衍射强度影响的程度.  相似文献   

5.
调制周期对CrAl/CrAlN多层薄膜结构及耐腐蚀性能的影响   总被引:1,自引:0,他引:1  
采用中频非平衡磁控溅射技术制备CrAl/CrAlN多层薄膜,研究了调制周期对CrAl/CrAlN多层薄膜的微观结构、机械性能和耐腐蚀性能的影响。研究表明:CrAl/CrAlN多层薄膜具有致密的层状结构。随着调制周期的增大,薄膜应力由拉应力转变为压应力,当调制周期为285.7nm时,CrAl/CrAlN多层薄膜的硬度出现了极大值。此外,调制周期对薄膜的耐腐蚀性能有显著的影响。经过96h盐雾(3.5%NaCl)试验,调制周期为142.8nm的CrAl/CrAlN多层薄膜依然没有发生腐蚀现象,表明此条件下CrAl/CrAlN薄膜具有优异的耐腐蚀性能。  相似文献   

6.
采用电弧离子镀方法制备了TiN/TiAlN多层薄膜,研究了调制周期对薄膜多层结构和摩擦磨损性能的影响。结果表明:在相同的沉积时间内,随调制周期的增加,多层薄膜的层数减少,每一层的厚度增加,层与层之间的区分更加清晰。摩擦磨损测试结果表明:由于多层薄膜的调制结构,引起薄膜对磨层的变化,当多层薄膜的调制周期为54 nm时,多层薄膜的摩擦系数最小;当调制周期为112 nm时,多层薄膜的摩擦系数最高;当调制周期为164 nm时,多层薄膜的磨痕宽度最小。在摩擦磨损过程中,GCr15钢球的磨损面一直处于快速磨损阶段,对磨痕能谱线扫描结果发现磨屑的主要成分是Fe和FeOx。  相似文献   

7.
Mo/SiO2软X射线多层膜反射镜的界面分析   总被引:1,自引:0,他引:1  
用X射线衍射的动力学理论对磁控溅射法制备的Mo/SiO2多层膜低角X射线衍射谱进行拟合,定量分析了膜层的周期结构和界面粗糙度。同时,用Auger电子能谱证实了多层膜成分的周期性以及比较明晰的层界面,随样品厚度的增加,界面粗糙度增加。  相似文献   

8.
采用磁控溅射沉积技术在贫铀上镀铝膜,利用X射线衍射原位研究了铝镀层与贫铀基体的界面反应,分析了界面反应产物随温度和时间的变化规律。实验结果显示,镀膜过程Al/U界面没有化合物形成,而在较高温度下(≥335℃)两相界面会发生反应并形成金属间化合物UAl_3相,反应动力学符合形核-生长机制。形成的UAl_3相为疏松的层状结构,且相应的衍射峰强度随温度的升高而逐渐降低,直至消失,文中对该现象的原因进行了分析和讨论。  相似文献   

9.
目的研究Ti AlN/CrN多层膜及Ti AlN、Cr N单一膜层的微观组织和电化学性能区别,分析不同结构薄膜材料的耐腐蚀性影响因素。基于电化学参数、组织结构和腐蚀形貌特征,为开发新型腐蚀性薄膜提供理论依据。方法采用多弧离子镀方法,在316不锈钢基底上先沉积150 nm Cr薄膜作为过渡层,然后交替沉积Cr N薄膜和Ti AlN薄膜,制备单层厚度为10 nm的Ti AlN/CrN多层膜。作为对比,制备单一Ti AlN、CrN薄膜。通过SEM、XRD表征薄膜断面形貌、组织结构,并分析耐蚀机理,结合极化曲线和阻抗谱对三种涂层进行电化学性能分析,最后对涂层进行浸泡腐蚀试验。结果 Ti Al N/Cr N纳米多层膜为面心立方结构,呈现共格外延生长,且呈(200)择优取向。纳米多层膜的动电位极化曲线测量结果与不锈钢基体和单层薄膜相比,其腐蚀电位正移为-0.36 V,腐蚀电流密度降低为0.501μA/cm2,极化电阻为120 kΩ·cm2。阻抗谱试验结果表明,相比较于单层膜和基体,Ti Al N/Cr N多层膜的CPE值最低,为29.83×10...  相似文献   

10.
本文采用反应磁控溅射技术制备了TiAlN/TiN纳米多层涂层,利用XRD、SEM、TEM和纳米力学探针方法表征了多层涂层不同温度真空退火处理前后的微结构和硬度的变化。结果表明:随着退火温度的升高,沉积态TiAlN(4.5 nm)/TiN(1.5 nm)纳米多层涂层中TiAlN层和TiN之间的共格界面会逐渐转变为半共格界面,直至1 200℃时因原子扩散而变的模糊不清。退火过程中,TiAlN单层涂层和TiAlN/TiN纳米多层涂层由于其中TiAlN发生调幅分解析出c-AlN而使涂层硬度不断升高,超过一定温度c-AlN开始转变为h-AlN并导致涂层硬度迅速下降。当退火温度达到1 000℃后,TiAlN/TiN纳米多层涂层的硬度开始高于相应单层TiAlN涂层。相比于TiAlN单层涂层,TiAlN/TiN纳米多层涂层中的界面应变有助于抑制其中亚稳相c-AlN向稳定相h-AlN的转变,因而具有更好的高温稳定性。  相似文献   

11.
A series of CrAlN coatings with different Al content were synthesized on high-speed steel(M2)substrate by reactive direct current(DC)magnetron sputtering.The influences of Al content on the microstructure and mechanical property of CrAlN coatings were studied by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive spectrum(EDS)and nano-indentation techniques,respectively.The results indicate that the coatings exhibit only fcc c-CrN phase when Al content is less than 65 at%,and fcc c-CrN and c-AlN phases when Al content is 78 at%.The coating with Al content of 60 at%exhibits high hardness and elastic modulus.The maximum hardness and elastic modulus values could reach 36.8 GPa and 459.5 GPa,respectively.  相似文献   

12.
13.
Titanium-based nitride coatings on cutting tools, press molds and dies can be used to prolong their life cycle because of their superior corrosion and oxidation resistance. TiAlN/ZrN and TiCrN/ZrN multilayer coatings were prepared by RF magnetron sputtering, and their microstructural evolution and corrosion resistance during heat treatment were investigated. The TiAlN/ZrN and TiCrN/ZrN multilayer coatings are degraded by heating up to 600 °C with the formation of oxides particles on the surface. During the heat treatment, the TiCrN/ZrN and TiAlN/ZrN multilayer coatings show the lowest corrosion current density and the highest polarization resistance at temperature range of 400–500 °C. Consequently, the TiAlN/ZrN and TiCrN/ZrN multilayer coatings show good corrosion resistance at temperature range of 400–500 °C during heating.  相似文献   

14.
采用中频非平衡反应磁控溅射技术制备CrAlN薄膜,研究了氮气分压对CrAlN薄膜的沉积速率、薄膜成分、微观结构、机械性能和耐腐蚀性能的影响,并与CrN薄膜的性能进行了比较。研究表明,相比较CrN薄膜而言,CrAlN薄膜的硬度高,结构致密,耐腐蚀性好。随着氮气流量的升高,CrAlN薄膜沉积速率降低,Cr/Al比率升高;薄膜中CrN(200)衍射峰强度逐渐增强,六方结构的AlN相逐渐消失;薄膜的粗糙度由39 nm降低至10 nm,并且腐蚀电位升高,耐腐性增强。当氮气流量为53 mL/min时,CrAlN薄膜具有最佳的硬度和优良的耐腐蚀性能。  相似文献   

15.
利用反应磁控溅射和常规磁控溅射方法交替沉积了NiO/Ni纳米多层膜,研究了不同退火环境下多层膜的相结构、微观结构演化及光电性能。XRD和TEM结果表明,沉积态薄膜呈现明显的NiO和Ni交替多层结构;大气退火的NiO/Ni多层膜被氧化成沿(111)晶面择优生长的NiO薄膜;而真空退火的NiO/Ni薄膜仍然保持着明显的多层结构,各层膜的结晶程度提高。沉积态和真空退火态的NiO/Ni多层膜呈现低可见光透过率和低电阻率的特点,电阻率达到10-5?·cm数量级;大气退火的NiO/Ni多层膜呈现49.3%可见光平均透过率和高的电阻特性。  相似文献   

16.
目的比较Cr/CrN/CrAlN涂层和Cr/CrN交替涂层的耐腐蚀性能。方法利用电化学极化曲线、阻抗谱和中性盐雾试验进行测量,结合扫描电子显微镜(SEM)和原子力显微镜(AFM)表征微观形貌,分析两种涂层耐腐蚀性能的差异。同时,为研究涂层在服役中的损伤工况,分析了预制划痕对Cr/CrN/CrAlN涂层耐腐蚀性能的影响。结果Cr/CrN/CrAlN涂层的自腐蚀电流密度较Cr/CrN交替涂层和TC4基体低2个数量级,腐蚀速率较小。无损伤的Cr/CrN/CrAlN涂层的极化电阻Rp为868.7 kΩ·cm^2,预制1条损伤划痕涂层的极化电阻为792.0 kΩ·cm^2,而带有5条损伤划痕涂层的极化电阻Rp仅为77.2 kΩ·cm^2,减小至原始涂层的8%。Cr/CrN/CrAlN涂层经288 h连续盐雾腐蚀后增重仅为0.1 mg/cm^2,远小于CrN涂层和TC4基体,且增重速率趋于平缓。CrN涂层在连续盐雾腐蚀24 h后,腐蚀增重速率明显增加。结论由于Cr/CrN/CrAlN涂层结构增加了微裂纹和位错运动的界面阻塞,避免孔隙的连通,阻碍了腐蚀介质进入基体,因此涂层的耐腐蚀性能提高。对于表面预制划痕的Cr/CrN/CrAlN涂层,首先发生涂层的局部腐蚀,通过阴极极化加速后,腐蚀凹坑延伸到涂层/基体界面,加剧涂层的局部剥离。  相似文献   

17.
Nanostructured CrSiN/TiAlN multilayer coatings were deposited by a bipolar asymmetric reactive pulsed DC magnetron sputtering system. The thickness ratio of CrSiN to TiAlN layers was fixed at 1:1. The bilayer periods of the coatings were controlled to be from 6 to 40 nm. Furthermore, two CrSiN/TiAlN multilayer coatings with the same bilayer period (20 nm) but different CrSiN/TiAlN thickness ratios (2:8 and 8:2) were also deposited to explore the influence of thickness ratio on the mechanical properties of the multilayer coatings. The crystalline structures of the coatings were determined by a glancing angle X-ray diffractometer. The microstructures of thin films were examined by a scanning electron microscopy and a transmission electron microscopy, respectively. A nanoindenter, a micro Vickers hardness tester, and a pin-on-disk wear tester were used to evaluate the hardness, the toughness and the tribological properties of the thin films, respectively. The maximum hardness of the multilayers was obtained when the bilayer period was at 10 nm for the coating with the same thickness ratio of CrSiN to TiAlN layers (1:1). Meanwhile, the thickness ratio of CrSiN to TiAlN layer had great influence on the hardness and the toughness properties of the multilayer coatings. The hardness and the toughness of the CrSiN/TiAlN multilayer coatings increased as the individual TiAlN layer thickness increased.  相似文献   

18.
采用直流磁控溅射技术在烧结NdFeB磁体表面沉积Ti/Al多层膜,并研究其结构及在NaCl溶液中的耐腐蚀性能。在Ti/Al多层膜中,Ti层为密排六方结构,成功打断了Al层(面心立方结构)的柱状晶结构生长。与纯Al膜相比,Ti/Al多层膜具有更致密的表面,且周期数增加,表面越平整致密。动电位极化曲线结果发现,纯Al膜试样的自腐蚀电流密度为1.9×10-5 A/cm-2左右,5周期Ti/Al多层膜试样的自腐蚀电流密度约为1.1×10-7 A/cm2,比纯Al膜小近两个数量级,且随着多层膜周期数的增加,其腐蚀电流密度进一步减小。这些结果表明在快速且破坏性强的腐蚀情况下,Ti/Al多层膜抗腐蚀能力比纯Al膜好,且随着周期数的增加进一步提高。NaCl溶液中长期腐蚀试验时,Ti/Al多层膜的耐腐蚀性能不如纯Al膜,这可能是由Ti层和Al层间形成原电池且多层膜应力较大导致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号