首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
超级马氏体不锈钢耐各种介质的腐蚀对其使用至关重要。采用电化学噪声(ENC)、电化学阻抗谱(EIS)和动电位极化(PDP)曲线,研究了00Cr15超级马氏体不锈钢在含H2SO4的酸性NaCl溶液中的腐蚀行为。结果表明:随着其浸泡时间的延长,噪声电阻逐渐增大,噪声谱功率曲线的斜率在48 h时突然下降,即钝化膜变得稳定;电化学阻抗谱中的容抗弧随时间的延长逐渐增大,48 h后基本不再变化;随浸泡时间的延长,点蚀电位升高,维钝电流密度下降;00Cr15超级马氏体不锈钢在含H2SO4的酸性NaCl溶液中的再钝化能力强,耐蚀性好。  相似文献   

2.
采用扫描电子显微镜(SEM)、动电位极化技术及电化学交流阻抗技术,研究了3种不同铝粉含量的锌铝涂层表面形貌,以及涂层在3.5%NaCl溶液中的浸泡24h的自腐蚀电位、自腐蚀电流密度、阳极钝化情况和阻抗的变化。结果表明:随着铝粉含量的增加,涂层表面逐渐变得光亮、平整;涂层的自腐蚀电位依次升高,自腐蚀电流密度依次降低,当铝粉含量为50%时,涂层动电位极化曲线不存在钝化现象。涂层在3.5%NaCl溶液中浸泡24h的电化学阻抗谱拟合结果显示,铝粉含量较高时,涂层表面形成氧化膜,使得涂层的阻抗增大,降低水的渗入。  相似文献   

3.
为了解决在深海油气钻采中出现的酸性环境中对钻采设备的腐蚀问题,结合海洋中油气田的实际环境,在pH值为3的Na2SO4+H2SO4溶液中,采用电化学极化曲线、循环极化曲线、电化学阻抗谱(EIS)结合静态浸泡实验,分别研究了Cl-质量分数(1%、3.5%和7%)和溶液温度(4、25、50和80℃)对马氏体沉淀硬化不锈钢PH13-8Mo电化学腐蚀行为的影响,并采用点缺陷PDM模型结合闭塞电池理论对其腐蚀机理进行了分析.结果表明,随着溶液中Cl-浓度的升高,PH13-8Mo极化曲线中二次钝化的特性消失.溶液中Cl-浓度和温度的升高均使得PH13-8Mo的点蚀电位降低、点蚀保护电位降低,抗点蚀能力下降,腐蚀电流密度增大,钝化电位区间缩短,电荷转移电阻呈指数关系下降,样品表面腐蚀形貌由点蚀发展为全面腐蚀.  相似文献   

4.
为研究溶解氧量对铂钽复合阳极电化学行为的影响,通过测量阳极的开路电位、动电位极化曲线以及施加电位分别为0.90,1.15,1.35,1.55 V时的电化学阻抗谱,研究了铂钽复合阳极在不同溶解氧量海水中的电化学行为.结果表明,阳极在溶解氧量分别为0,4,8 mg/L时对应的开路电位分别为0.276,0.296,0.372 V,表明阳极的电化学性能有所降低;在施加电位为0.90,1.15 V时,溶解氧在阳极钝化、过钝化过程中对钝化膜的形成以及溶解具有显著的作用,而随着外加电压的增大,在1.35,1.55 V时,阳极二次钝化过程中溶解氧的影响作用减弱.  相似文献   

5.
目前产于高氮不锈钢的研究多集中于理论基础、制造工艺和力学性能等方面,有关耐蚀性方面的研究有限。通过循环极化、Mott-Schottky曲线以及电化学阻抗(EIS)等方法,研究了Cr23Mo1N奥氏体不锈钢(高氮钢,HNSS)和316L不锈钢在Cl-溶液中的耐点蚀性能。结果表明:与316L不锈钢相比,高氮钢具有更正的自腐蚀电位,更小的维钝电流密度。阻抗谱表明高氮钢的钝化膜比316L更加稳定,且电荷转移电阻更大。Mott-Schottky曲线表明高氮钢的点缺陷施主浓度比316L不锈钢低一个数量级,钝化膜的绝缘性更好。循环极化曲线表明高氮钢的点蚀敏感性更小,钝化膜的自修复能力更强,耐蚀性能更加优越。  相似文献   

6.
采用外加恒电位方法研究拉应力对2205双相不锈钢临界点蚀温度(CPT)的影响,结合动电位极化、恒电位极化及电化学阻抗谱(EIS)等方法分析了不同应力典型温度下的电化学腐蚀特征。结果表明,尽管拉应力降低了2205双相不锈钢的CPT,但在140 MPa应力下即便在85℃时也没有发生点蚀。电化学分析表明,在CPT以下应力降低2205双相不锈钢击破电位(E_b),恒电位极化时试样表面仍处于钝化状态;在CPT以上会发生稳态点蚀。随温度升高,E_b明显降低。140 MPa应力下试样未发生点蚀的原因可能是,试样表面的微裂纹受应力作用,在极化过程中发生裂尖区裂纹扩展和再次钝化,腐蚀特征并不能表征其耐蚀性。  相似文献   

7.
Al-Zn-Bi系合金在NaCl溶液中的电化学性能研究   总被引:2,自引:0,他引:2  
采用CHI660C电化学工作站测试了Al-5Zn-0.5Bi和Al-5Zn-0.5Bi-0.06Sn合金在3%NaCl溶液中的极化曲线和电化学阻抗谱(EIS),考察了合金的电化学性能.结果表明,Al-5Zn-0.5Bi中添加0.06%的Sn元素后,自腐蚀电位Ecorr升高0.017V,耐腐蚀性能有所增强.等效电路RS(RPC)(QRD(RaL))较好地拟合了Al-5Zn-0.5Bi系合金在3%NaCl溶液中的EIS谱,基本反映了该铝合金的电化学腐蚀过程.随着合金在3%NaCl溶液中浸泡时间的延长,腐蚀产物膜增厚并部分脱落,主要形成点蚀.另外,腐蚀产物更容易在含Sn合金氧化膜缺陷处形成,阻碍了腐蚀介质中Cl-向其内部扩散,从而减缓了点蚀和自腐蚀速度,有助于提高该合金材料作为牺牲阳极的电流效率.  相似文献   

8.
紫铜在海洋微生物作用下的电化学腐蚀行为   总被引:1,自引:0,他引:1  
采用开路电位、电化学极化曲线、电化学阻抗谱(EIS)研究了紫铜在海水盐度和微生物影响下的腐蚀行为。结果表明,无菌介质条件下,随着介质盐度的增加,紫铜的开路电位负移,使得腐蚀倾向与腐蚀率变大。扫描电子显微镜(SEM)形貌分析表明在紫铜上附着的海洋微生物以杆状细菌为主,咸淡水中的细菌附着量比海水的大,导致紫铜在盐度不高的咸淡水耐蚀性能下降。EIS结果表明在海洋微生物作用下紫铜的交流阻抗模值减少,降低了紫铜的极化电阻和表面膜的电阻,从而加速了紫铜的腐蚀进程。  相似文献   

9.
为了给应用于浓硫酸工业生产的304不锈钢管道的防护提供指导,采用电化学阻抗谱法与动电位扫描法研究了304不锈钢焊接接头各个区域在质量分数为98%的浓硫酸中不同温度下的腐蚀行为。结果表明:304不锈钢焊接接头在浓硫酸中的腐蚀形式以点蚀为主。在相同条件的浓硫酸介质中,焊接接头各区域耐蚀性优劣依次为:基材、焊缝、热影响区,焊接过程对不锈钢的腐蚀起到促进作用。随着硫酸介质温度的逐渐升高,基材的钝化膜比较稳定,而焊缝与热影响区的钝化膜会发生破裂;并且各区域的自腐蚀电流与腐蚀速率会逐渐增大,耐腐蚀性逐渐下降。  相似文献   

10.
采用浸泡模拟实验方法、电化学极化和电化学阻抗谱测试技术,研究了Cl~-浓度对SiC_P/Al复合材料电化学腐蚀行为的影响。结果表明:SiC_P/Al复合材料在Cl~-介质下钝化现象不明显,腐蚀过程主要为点蚀腐蚀。随Cl~-浓度增加,SiC_P/Al复合材料腐蚀速率增加,点蚀电位降低,且复合材料的腐蚀过程机制表现为由单纯电荷传递过程机制向电荷传递过程与腐蚀产物扩散共同作用的混合机制转变。电化学阻抗谱随Cl~-浓度增加呈现出2种类型:单一容抗弧类型、高频区容抗弧和低频区一条与实轴呈45°直线(经典Warburg阻抗)组合的复合类型。  相似文献   

11.
采用线性扫描(LSV)、计时电流法(CA)、电化学阻抗谱(EIS)和表面观察等方法,研究Ti-48Al-2Cr-2Nb合金在NaNO_3(质量分数为20%)溶液中高电位(7 ~16 V)电化学腐蚀行为以及外加电位对腐蚀行为的影响。阻抗谱数据采用Maxwell传输线模型进行拟合。结果表明:电流密度随着电位的增加波动变大,样品均经历了非均匀腐蚀到均匀腐蚀的过程;腐蚀后吸附反应的个数从腐蚀前的7个减少为5个;样品腐蚀后的总腐蚀抗力与总时间常数的下降均随着电位增加经历先增加后减少的过程,腐蚀粗糙程度的增加是先迅速下降然后趋于平稳。  相似文献   

12.
李闯  范颖芳  李秋超 《复合材料学报》2020,37(11):2917-2927
利用电化学阻抗谱、循环动电位极化、阴极极化、热重和XRD等方法,研究了偏高岭土(MK)掺量(占MK/水泥总质量的20wt%、30wt%、40wt%)对钢筋-MK/水泥砂浆中钢筋钝化膜形成及其耐蚀性能的影响。结果表明:在一般环境中,钢筋在不同MK掺量的钢筋-MK/水泥砂浆中均可以形成稳定的钝化膜;在质量分数为3.5wt%的NaCl溶液环境中,MK掺量过多会使钢筋-MK/水泥砂浆中钢筋的钝化膜稳定性降低,耐蚀性能下降。从钢筋钝化膜稳定角度考虑,在氯盐环境中,水泥基材料中MK掺量应予以限制。   相似文献   

13.
前期研究发现,SiC颗粒在阴极有利于Ni结晶形核,为此研究了在电位-250~-1050 mV(vs SCE)下,Ni-SiC复合体系电沉积阻抗谱特征,利用扫描电镜(附能谱仪)观察了Ni-SiC体系复合沉积初期的表面形貌.结果表明:Ni-SiC体系Nyquist谱主要表现为一个压扁的容抗半圆,随着电位负移,Ni-SiC沉积的电化学阻抗值基本呈下降趋势.在电位-750~-1050 mV,Nyquist谱低频段还伴随一个感抗弧,Ni-SiC沉积的阻抗显著减小,反映Ni在铜基体上开始电结晶形核/生长;在低过电位(-250~-650 mV)下,Sic颗粒明显降低了Ni-Sic体系Ni沉积还原反应的电荷转移电阻;分析认为:Sic微粒在阴极表面上对镍的中间产物生成起到了活化作用.  相似文献   

14.
2A12铝合金在含Cl~-环境中的腐蚀行为和规律研究   总被引:1,自引:0,他引:1  
通过室内浸泡模拟实验方法,研究了2A12铝合金在含Cl-典型环境中的腐蚀行为与电化学规律.采用扫描电镜观察了试样的组织和腐蚀产物的微观形貌,并用能量色散谱(EDS)分析了腐蚀产物元素组成.采用失重法分析了2A12铝合金腐蚀动力学规律,并采用电化学阻抗技术分析了2A12铝合金腐蚀后的电化学行为规律.实验结果表明,浸泡480 h后,2A12铝合金发生了明显的点蚀和小片状剥蚀,Cl-和第二相是促进点蚀形成和发展的主要原因;浸泡480 h后的动力学规律遵从幂指数规律;电化学阻抗谱中的Nyquist曲线由压缩的双容抗弧组成,随浸泡时间的延长,点蚀不断生成并发展,与腐蚀产物的产生与剥落综合作用,使电化学阻抗模值呈先减小后增大再减小的动态变化.  相似文献   

15.
为分析检测316L不锈钢在电解液中钝化膜的耐腐蚀性能,采用Tafel腐蚀极化曲线、电化学阻抗谱、Mott-Schottky进行了表征。极化曲线结果表明:腐蚀电位为-0.955 V,腐蚀电流密度为10-4.02 A/cm2;电化学阻抗测试结果表明:当成膜电势为0.3 V时,该膜的耐蚀性能均优异于其他电势下形成的膜;由Mott-Schottky分析表明:钝化膜的施体密度基本随成膜电势的增加而降低,钝化膜的厚度基本随成膜电势增加而增加。同时,根据PDM分析可知该膜在该电解液下100 a内将被腐蚀至4.5 mm的深度。  相似文献   

16.
李冰洁  江旭东  潘春旭 《材料导报》2017,31(11):138-143
采用电化学分析技术,如开路电位(OCP)、极化曲线(Tafel曲线)、电化学阻抗谱(EIS)等,并结合显微组织观察研究不同锡(Sn)含量的青铜合金在NaCl、Na_2SO_4溶液中的腐蚀过程。结果显示高Sn锡青铜具有更好的耐腐蚀性;对锡青铜合金中显微组织的观察发现α相的点蚀坑明显多于δ相,表明在电解质溶液中α相更易发生腐蚀。本研究为古代青铜器的锈蚀防护提供了基础数据,具有较重要的指导价值。  相似文献   

17.
为了探明Cl-浓度对汽轮机末级叶片常用钢腐蚀的影响,通过动电位极化法、电化学阻抗谱、Mott-Schottky曲线、激光共聚焦显微镜、扫描电镜等方法分析了在不同Cl-浓度模拟溶液中14Cr12Ni3WMoV马氏体不锈钢的电化学腐蚀行为.结果表明:随着Cl-浓度的不断增大,不锈钢钝化膜点缺陷增加,稳定性下降,点蚀敏感性增...  相似文献   

18.
油气田管材常常在各种应力和变形状态下服役,为了研究应力和变形对钢CO2腐蚀电化学行为的影响,利用电化学技术分别测量了16MnR钢在不同弯曲塑性变形状态下的CO2腐蚀电化学阻抗谱、线性极化电阻和自然腐蚀电位.结果表明:随着应变的增大,自然腐蚀电位负移,线性极化电阻逐渐减小,腐蚀速率增大.在拉伸和压缩塑性变形状态下16MnR钢CO2腐蚀的电化学阻抗谱均由高频容抗弧和低频感抗弧组成.随着应变的增大,容抗弧和感抗弧逐渐收缩,反应的总阻抗减小.冷加工变形增大了16MnR钢的电化学活性,使阳极溶解加快,腐蚀速率增大.  相似文献   

19.
陈朝轶  向嵩  胡亚楠  梁宇  石维 《材料导报》2016,30(20):62-66, 93
采用动电位极化、电化学阻抗谱技术对超级双相不锈钢SAF2507在高温高浓度磷酸中的腐蚀行为进行研究。结果表明,SAF2507在64%~72%的85℃磷酸中发生自钝化,且随着浓度增加到80%~88%时,腐蚀电流密度增大,其值仍较小。SAF2507在25~70℃的76%浓度磷酸中,有二次活化现象。随温度升高,SAF2507的反应过程由电化学步骤控制转变为电化学和扩散反应共同控制,且容抗弧半径逐渐减小,极化电阻逐渐减小,耐蚀性能下降。  相似文献   

20.
目前,有关温度对CO_3~(2-)-HCO_3~-环境下X80管线钢腐蚀行为的影响规律尚无统一的认识。为了探究高强度钢在不同温度的0.5 mol/L Na_2CO_3+1.0 mol/L NaHCO_3溶液中的腐蚀行为,采用动电位极化、电化学阻抗技术,并结合金相显微镜观察研究了温度对X80管线钢在0.5 mol/L Na_2CO_3+1.0 mol/L NaHCO_3溶液中电化学腐蚀行为的影响规律,并通过Mott-Schottky曲线对不同温度下钝化膜的半导体性质进行探讨。结果表明:温度从30℃上升至75℃时,X80钢的点蚀电位和电荷转移电阻均逐渐减小,腐蚀现象越明显;当温度达到90℃时,点蚀电位和电荷转移电阻反而增大,腐蚀程度有所减缓;在0.3~0.7 V内,钝化膜呈现出典型的n型半导体特征;随着温度的升高,钝化膜内的施主电流密度和平带电位呈现先降低后增加的趋势,钝化膜稳定性先减弱后增强;在75~90℃之间存在一个临界温度,此温度下钝化膜的缺陷密度最大,保护性最差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号