首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a study of optical spectra of the Wolf–Rayet star AzV 336a (=SMC WR7) in the Small Magellanic Cloud. Our study is based on data obtained at several Observatories between 1988 and 2001. We find SMC WR7 to be a double-lined WN+O6 spectroscopic binary with an orbital period of 19.56 d. The radial velocities of the He absorption lines of the O6 component and the strong He  ii emission at λ 4686 Å of the WN component describe anti-phased orbital motions. However, they show a small phase shift of ∼1 d. We discuss possible explanations for this phase shift. The amplitude of the radial velocity variations of He  ii emission is twice that of the absorption lines. The binary components have fairly high minimum masses, ∼18 and 34 M for the WN and O6 components, respectively.  相似文献   

2.
3.
4.
We present results of an ≈20-ks X-ray observation of the Wolf–Rayet (WR) binary system WR 147 obtained with XMM–Newton . Previous studies have shown that this system consists of a nitrogen-type WN8 star plus an OB companion whose winds are interacting to produce a colliding wind shock. X-ray spectra from the pn and MOS detectors confirm the high extinction reported from infrared studies and reveal hot plasma including the first detection of the Fe Kα line complex at 6.67 keV. Spectral fits with a constant-temperature plane-parallel shock model give a shock temperature   kT shock= 2.7  keV (   T shock≈ 31  MK), close to but slightly hotter than the maximum temperature predicted for a colliding wind shock. Optically thin plasma models suggest even higher temperatures, which are not yet ruled out. The X-ray spectra are harder than can be accounted for using 2D numerical colliding wind shock models based on nominal mass-loss parameters. Possible explanations include: (i) underestimates of the terminal wind speeds or wind abundances, (ii) overly simplistic colliding wind models or (iii) the presence of other X-ray emission mechanisms besides colliding wind shocks. Further improvement of the numerical models to include potentially important physics such as non-equilibrium ionization will be needed to rigorously test the colliding wind interpretation.  相似文献   

5.
We have obtained complete phase coverage of the WC7+O binaries WR 42 = HD 97152 and WR 79 = HD 152270 with high signal-to-noise ratio (S/N), moderate-resolution spectra. Remarkable orbital phase-locked profile variations of the C  iii λ 5696 line are observed and interpreted as arising from colliding wind effects. Within this scenario, we have modelled the spectra using a purely geometrical model that assumes a cone-shaped wind–wind interaction region which partially wraps around the O star. Such modelling holds the exciting promise of revealing a number of interesting parameters for WR+O binaries, such as the orbital inclination, the streaming velocity of material in the interaction region and the ratio of wind momentum flux. Knowledge of these parameters in turn leads to the possibility of a better understanding of WR star masses, mass-loss rates and wind region characteristics.  相似文献   

6.
We report the discovery of 15 previously unknown Wolf–Rayet (WR) stars found as part of an infrared (IR) broad-band study of candidate WR stars in the Galaxy. We have derived an empirically based selection algorithm which has selected ∼5000 WR candidate stars located within the Galactic plane drawn from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (mid-IR) and Two-Micron All-Sky Survey (near-IR) catalogues. Spectroscopic follow-up of 184 of these reveals 11 nitrogen-rich (WN) and four carbon-rich (WC) WR stars. Early WC subtypes are absent from our sample and none shows evidence for circumstellar dust emission. Of the candidates which are not WR stars, ∼120 displayed hydrogen emission-line features in their spectra. Spectral features suggest that the majority of these are in fact B supergiants/hypergiants, ∼40 of these are identified Be/B[e] candidates.
Here, we present the optical spectra for six of the newly detected WR stars, and the near-IR spectra for the remaining nine of our sample. With a WR yield rate of ∼7 per cent and a massive star detection rate of ∼65 per cent, initial results suggest that this method is one of the most successful means for locating evolved, massive stars in the Galaxy.  相似文献   

7.
A search for evidence of colliding winds is undertaken among the four certain Magellanic Cloud WC/WO spectroscopic binaries found in the companion Paper I, as well as among two Galactic WC/WO binaries of very similar subtype. Two methods of analysis, which allow the determination of orbital inclination and parameters relating to the shock cone from spectroscopic studies of colliding winds, are attempted. In the first method, Lührs' spectroscopic model is fitted to the moderately strong C  iii 5696-Å excess line emission arising in the shock cone for the stars Br22 and WR 9. The four other systems show only very weak C  iii 5696-Å emission. Lührs' model follows well the mean displacement of the line in velocity space, but is unable to reproduce details in the line profile and fails to give a reliable estimate of the orbital inclination. In the second method, an alternative attempt is also made to fit the variation of more global quantities, full width at half-maximum and radial velocity of the excess emission, with phase. This method also gives satisfactory results in a qualitative way, but shows numerical degeneracy with orbital inclination. Colliding wind effects on the very strong C  iv 5808-Å Wolf–Rayet emission line, present in all six binaries, are also found to behave qualitatively as expected. After allowing for line enhancement in colliding wind binaries, it now appears that all Magellanic Cloud WC/WO stars occupy a very narrow range in spectral subclass: WC4/WO3.  相似文献   

8.
9.
A nearly complete sample of 24 Magellanic Cloud WC/WO subclass Wolf–Rayet stars is studied spectroscopically and photometrically to determine its binary frequency. Theory predicts the Roche lobe overflow produced Wolf–Rayet binary frequency to be 52±14 per cent in the Large Magellanic Cloud and 100 per cent in the Small Magellanic Cloud, not counting non-Roche lobe overflow Wolf–Rayet binaries. Lower ambient metallicity ( Z ) leads to lower opacity, preventing all but the most massive (hence luminous) single stars from reaching the Wolf–Rayet stage. However, theory predicts that Roche lobe overflow even in binaries of modest mass will lead to Wolf–Rayet stars in binaries with periods below approximately 200 d, for initial periods below approximately 1000 d, independent of Z . By examining their absolute continuum magnitudes, radial velocity variations, emission-line equivalent widths and full widths at half-maximum, a WC/WO binary frequency of only 13 per cent, significantly lower than the prediction, is found in the Large Magellanic Cloud. In the unlikely event that all of the cases with a less certain binary status actually turn out to be binary, current theory and observation would agree. (The Small Magellanic Cloud contains only one WC/WO star, which happens to be a binary.) The three WC+O binaries in the Large Magellanic Cloud all have periods well below 1000 d. The large majority of WC/WO stars in such environments apparently can form without the aid of a binary companion. Current evolutionary scenarios appear to have difficulty explaining either the relatively large number of Wolf–Rayet stars in the Magellanic Clouds, or the formation of Wolf–Rayet stars in general.  相似文献   

10.
We study the evolution of the circumstellar medium of massive stars. We pay particular attention to Wolf-Rayet stars that are thought to be the progenitors of some long gamma-ray bursts (GRBs). We detail the mass-loss rates we use in our stellar evolution models and how we estimate the stellar wind speeds during different phases. With these details we simulate the interactions between the wind and the interstellar medium to predict the circumstellar environment around the stars at the time of core-collapse. We then investigate how the structure of the environment might affect the GRB afterglow. We find that when the afterglow jet encounters the free-wind/stalled-wind interface, rebrightening occurs and a bump is seen in the afterglow light curve. However, our predicted positions of this interface are too distant from the site of the GRB to reach while the afterglow remains observable. The values of the final wind density,   A *  , from our stellar models are of the same order (≲1) as some of the values inferred from observed afterglow light curves. We do not reproduce the lowest   A *  values below 0.5 inferred from afterglow observations. For these cases, we suggest that the progenitors could have been a WO-type Wolf–Rayet (WR) star or a very low-metallicity star. Finally, we turn our attention to the matter of stellar wind material producing absorption lines in the afterglow spectra. We discuss the observational signatures of two WR stellar types, WC and WO, in the afterglow light curve and spectra. We also indicate how it may be possible to constrain the initial mass and metallicity of a GRB progenitor by using the inferred wind density and wind velocity.  相似文献   

11.
We report the results of a spectroscopic and polarimetric study of the massive, hydrogen-rich WN6h stars R144 (HD 38282 = BAT99-118 = Brey 89) and R145 (HDE 269928 = BAT99-119 = Brey 90) in the Large Magellanic Cloud. Both stars have been suspected to be binaries by previous studies (R144: Schnurr et al.; R145: Moffat). We have combined radial-velocity (RV) data from these two studies with previously unpublished polarimetric data. For R145, we were able to establish, for the first time, an orbital period of 158.8 d, along with the full set of orbital parameters, including the inclination angle i , which was found to be   i = 38°± 9°  . By applying a modified version of the shift-and-add method developed by Demers et al., we were able to isolate the spectral signature of the very faint line companion star. With the RV amplitudes of both components in R145, we were thus able to estimate their absolute masses. We find minimum masses   M WRsin3 i = 116 ± 33 M  and   M Osin3 i = 48 ± 20 M  for the WR and the O component, respectively. Thus, if the low-inclination angle were correct, resulting absolute masses of the components would be at least 300 and  125 M  , respectively. However, such high masses are not supported by brightness considerations when R145 is compared to systems with known very high masses such as NGC 3603-A1 or WR20a. An inclination angle close to  90°  would remedy the situation, but is excluded by the currently available data. More and better data are thus required to firmly establish the nature of this puzzling, yet potentially very massive and important system. As to R144, however, the combined data sets are not sufficient to find any periodicity.  相似文献   

12.
13.
A spectroscopic search for luminous companions to WC9-type Wolf–Rayet stars making circumstellar dust reveals the presence of absorption lines attributable to companions in the blue spectra of WR 69 (HD 136488) and WR 104 (Ve2–45). Comparison of spectra of WR 104 observed in 1995 and 1997 showed the absorption lines to be more conspicuous in the latter observation and the emission lines weaker, suggesting a selective eclipse of the WC9 star similar to that observed by Crowther in 1996. The WC9 emission-line spectra are shown to be less uniform than previously thought, showing a significant range of O  ii line strengths. The only two WC9 stars in the observed sample that do not make circumstellar dust, WR 81 (He3–1316) and WR 92 (HD 157451), are found to have anomalously weak O  ii and strong He  ii lines. We suggest that these spectroscopic differences may reflect a compositional difference that plays a role in determining which of the WC9 stars make dust.  相似文献   

14.
15.
We present a detailed, extensive investigation of the photometric and spectroscopic behaviour of WR 30a. This star is definitely a binary system with a period around 4.6 d. We propose the value         . The identification of the components as WO4+O5((f)) indicates a massive evolved binary system; the O5 component is a main-sequence or, more likely, a giant star. The radial velocities of the O star yield a circular orbit with an amplitude         and a mass function of 0.013     . The spectrum of WR 30a exhibits strong profile variations of the broad emission lines that are phase-locked with the orbital period. We report the detection of the orbital motion of the WO component with     , but this should be confirmed by further observations. If correct, it implies a mass ratio     . The star exhibits sinusoidal light variations of amplitude 0.024 mag peak-to-peak with the minimum of light occurring slightly after the conjunction with the O star in front. On the basis of the phase-locked profile variations of the C  iv λ 4658 blend in the spectrum of the WO, we conclude that a wind–wind collision phenomenon is present in the system. We discuss some possibilities for the geometry of the interaction region.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号