首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云广特高压直流输电线路雷电屏蔽性能研究   总被引:4,自引:4,他引:0  
为评估、计算输电线路雷电屏蔽性能即绕击性能,基于长空气间隙放电理论建立了特高压直流输电线路雷电屏蔽的先导发展模型,并用该模型计算了拟建立的云广±800 kV直流特高压输电线路雷电屏蔽性能。计算结果表明:随着地面倾角、保护角的增加,线路屏蔽失效率明显增加,特高压直流输电线路最好采用负保护角运行。  相似文献   

2.
为了更准确地分析我国特高压输电线路雷电绕击屏蔽性能,基于我国长空气间隙放电试验数据和雷电回击观测数据,建立考虑地形条件的适应于大尺寸输电线路雷电屏蔽性能评估的改进电气几何模型(electric geometry model, EGM)并进行验证,将击距公式修正为rs = 0.13(I 2+ 40I)0.814。改进EGM模型对超、特高压输电线路三相导线的雷电绕击率计算结果与日本实际线路雷击观测数据及我国平原、山区特高压输电线路雷击模拟试验数据具有一致性,验证了改进EGM模型的适用性。采用改进EGM模型评估了杆塔型式、山坡陡度对我国特高压线路绕击跳闸率的影响。计算结果表明,采用SZ322型杆塔的绕击跳闸率高于采用SZT1型杆塔,且特高压线路绕击跳闸率随山坡陡度的增大而增大。EGM模型的修正以及计算方法的优化,对我国特高压输电线路雷电屏蔽性能的设计具有一定的指导意义。  相似文献   

3.
高原山地500kV输电线路雷电屏蔽特性试验研究   总被引:2,自引:1,他引:1  
运行经验表明,雷电绕击是引起220kV以上电压等级输电线路雷击跳闸的主要原因,为了更好地了解500kV输电线路空间各个落雷点的绕击概率分布情况以及避雷线保护角对屏蔽性能的影响,以贵州500kV典型输电线路为研究对象,通过对缩小的输电线路杆塔模型进行空间绕击屏蔽模拟试验,研究结果验证了负保护角在防绕击性能上的优越性,研究...  相似文献   

4.
架空线路防绕击避雷针实用化技术   总被引:19,自引:6,他引:13  
寻凯 《高电压技术》2008,34(6):1301-1305
为了探讨输电线路防雷新技术、新方法,降低雷击电跳闸率,结合国内外输电线路及特高压的运行经验,着重分析了引起高压输电线路故障跳闸的主要原因—雷电绕击问题,并在输电线路防雷经典理论的基础上,利用电气几何模型和雷电先导理论的最新成果,研究了架空线路防绕击避雷针实用化技术。研究表明,在架空地线上合理装设防绕击避雷针,可有效地增强其屏蔽性能和引雷作用,将可能遭受的绕击控制转化为反击,大幅度降低雷击故障跳闸率。实际运行的情况和初步取得的效果为输电线路防雷治理及特高压电网建设积累了经验。  相似文献   

5.
准确评估高压直流输电线路的反击和绕击耐雷性能,对线路的设计和施工具有重要的意义。基于杆塔的多波阻抗模型,采用相交法作为绝缘子闪络的判据,采用改进的电气几何模型(electric geometry method,EGM)作为绕击跳闸率的计算方法,研究了3种不同塔型的±800 kV与±500 kV同塔双回直流输电线路的反击、绕击耐雷性能及其影响因素。结果表明:线路反击性能随杆塔高度的降低、接地电阻的减小而增强;线路绕击耐雷性能随地面倾角的减小、保护角的减小和杆塔高度的降低而增强;杆塔的塔型和导线排列方式会影响防雷性能,并通过对比得到最佳布置方案,同时给出相应的建议。  相似文献   

6.
国内外特高压输电线路运行经验表明:导致特高压输电线路跳闸事故的主要原因是雷击,并且随着电压等级提高,雷击导致跳闸的概率逐渐增大。本文以1000k V输电线路为研究对象,分别仿真并且分析了4种不同经典单回杆塔的绕击跳闸率.并且采用电磁暂态计算程序ATP-EMTP,对雷电波反击进行仿真,研究分析4种杆塔对雷电波在线路中传播的影响。  相似文献   

7.
基于先导发展法的特高压直流输电线路绕击特性分析   总被引:5,自引:5,他引:0  
雷电绕击是影响高压输电线路安全稳定运行的关键因素之一,特高压直流线路对雷电防护的需求与常规线路相比更加迫切。为此介绍了基于先导发展法的特高压直流线路雷电绕击跳闸率分析方法;利用该方法针对±800 kV特高压直流线路绕击特性开展仿真研究,分析了绕击跳闸率随绝缘水平、保护角的变化规律,研究了典型地形条件下雷电绕击路径和绕击电流的分布特性,分析了山坡、山脊和跨谷地形条件下线路的绕击跳闸率,研究了线路极性对跳闸率的影响。研究表明,减小保护角可明显降低绕击跳闸率,在山坡地形条件下,外侧导线由于受屏蔽减弱更易受到雷击,雷电先导可从近似水平的方向击中导线;跨谷深度增加时,由于地面屏蔽作用减小,雷击跳闸率明显提高;理论分析和运行经验都表明,直流线路正极导线遭受雷击的概率远高于负极,线路位于山脊时雷电绕击基本发生在正极导线侧。  相似文献   

8.
超高压输电线路典型雷击故障分析和研究   总被引:1,自引:0,他引:1  
针对雷击危及输电线路安全可靠运行的问题,采用电力系统计算机辅助设计(power systems computeraided design,PSCAD)对惠州供电局超高压输电线路雷击杆塔进行反击耐雷水平仿真计算。根据雷击杆塔前视塔和后视塔输电走廊范围内的典型地形,利用改进的电气几何模型计算其最大绕击雷电流,并结合雷电定位系统监测数据,判断2起雷击事故均由雷电绕击导线引起,其主要原因是地面倾角较大及地面的屏蔽效果减弱。考虑惠州供电局本身所处特殊强雷区,超高压输电线路走廊地形复杂,建议考虑输电走廊地形地貌,对超高压输电线路各杆塔的耐雷性能进行评估,采用安装避雷针、避雷器等经济合理的措施降低雷击跳闸率。  相似文献   

9.
架空输电线路绕击防护的新措施   总被引:8,自引:4,他引:4  
为解决超/特高压输电线路防绕击措施中传统的减小避雷线保护角的措施受到各方面局限(尤其对斜山坡地段)的问题,依据电气几何模型提出了防绕击的新措施—架设旁路屏蔽地线,通过增强大地的引雷能力来保护导线不受雷电绕击。计算表明架设屏蔽地线的高度随着其距离杆塔水平距离的增加先增大后减小,可在旁路屏蔽地线上加装短针增强其引雷能力。  相似文献   

10.
1000 kV特高压输电线路防绕击问题的探讨   总被引:11,自引:4,他引:7  
绕击是1000 kV特高压输电线路雷击跳闸的主要原因,为探讨此问题,分析并比较了目前输电线路绕击计算方法—规程法与电气几何模型法,指出电气几何模型将雷电的放电特性与线路的结构尺寸结合起来,很好解释了线路屏蔽失效现象,用于特高压的绕击计算中,并依据电气几何模型的原理提出减小1000kV线路绕击跳闸率的措施:减小避雷线保护角、安装可控放电避雷针、架设旁路屏蔽地线。  相似文献   

11.
雷击是造成输电线路闪络的主要原因之一.为了解决±800kV云广特高压直流线路的雷电防护问题,通过分析该线路的参数和调研线路沿线的雷电活动特点,以先导发展法为基础建立特高压线路雷击计算方法,对线路的反击和绕击防雷性能进行分析.首先调研了沿线各区域的雷电活动情况,给出了各区域境内的雷电日取值.然后,对云广特高压直流线路的雷击闪络特性进行了分析,给出了不同地形条件下地面倾角、绝缘强度、跨谷深度对雷击绕击特性的影响,以及杆塔高度、接地电阻等对雷击反击特性的影响.考虑地形对雷击故障的影响,通过地形加权和分段分析的方法求得线路各段的雷击闪络率.最后,就降低接地电阻、减小保护角等防雷措施进行了研究.  相似文献   

12.
减小地线保护角对改善线路防雷性能的效果   总被引:6,自引:5,他引:1  
雷电绕击是影响高压输电线路安全稳定运行的关键因素之一,减少地线保护角是降低绕击跳闸率的重要手段.为此,介绍了基于先导发展模型的超高压线路雷电绕击跳闸率分析方法,利用该方法对不同地形条件下各种塔型减小保护角对改善线路防雷性能的效果进行计算和对比,提出减小保护角的改造方案,对杆塔的力学性能进行校核,评估了减小保护角的经济费...  相似文献   

13.
超/特高压输电线路雷电绕击防护性能研究   总被引:77,自引:4,他引:77  
输电线路跳闸的主要原因是雷击闪络,这与线路现有雷击跳闸模型与线路实际运行情况存在较大差异有关。文中以电磁场理论为基础,对高杆塔下击距系数进行研究,利用自编程序仿真,结果表明击距系数随着杆塔高度的增加而减小,雷电流幅值对击距系数没有影响,利用线性拟合方式得击距系数β与杆塔高度日的关系式为:β=1.18—H/108.69。引入击距系数,提出利用改进的电气几何模型对超特高压线路绕击耐雷性能进行分析,并以500kV鸭福线路为例进行计算和分析,结果表明根据文中仿真模型所推导的β公式计算该线路的跳闸率与实际线路运行情况比较吻合。同时,分析了杆塔高度、地面倾角、线路保护角、线路绝缘强度等对输电线路绕击耐雷性能的影响。  相似文献   

14.
1000kV交流特高压输电线路的防雷保护   总被引:13,自引:0,他引:13  
葛栋  杜澍春  张翠霞 《中国电力》2006,39(10):24-28
利用研究输电线路雷电性能的自编程序LLPP,对UHV输电线路的雷电性能进行研究。介绍了对UHV输电线路避雷线屏蔽性能的研究结果和改进建议,并对UHV输电线路雷电反击耐雷性能进行计算。交流特高压输电线路的运行经验表明:特高压输电线路仍有相当的雷击闪络跳闸,初步分析是因避雷线屏蔽失效而致;杆塔较高和导线上工作电压幅值大,可能是较重要的因素。在工程设计中,对耐张塔和转角塔也要专门研究,使其具有较少的保护角。对于山区,因地形影响(山坡、峡谷),避雷线的保护可能要取负保护角,这些有待于进一步研究,从而保证我国特高压输电线路具有较好的雷电性能。交流特高压输电线路杆塔上较高的绝缘强度,使其具有良好的承受雷电反击的能力。  相似文献   

15.
为准确辨识输电线路雷击故障,分析了雷电绕击和反击的发生机理,并基于ATP-EMTP建立了110 kV输电线路杆塔多波阻抗模型及雷击仿真模型进行仿真。结果表明:雷击杆塔塔顶或绕击导线时,绝缘子串两端电位差方向不同;雷击闪络时,被击杆塔闪络相绝缘子串电位差降为0,雷击暂态过程结束后,邻近杆塔对应相绝缘子串电位差近似为0;反击闪络时,邻近杆塔绝缘子串两端电位差方向发生改变;杆塔入地电流方向可表征雷电流极性。基于上述特征,提出通过输电线路绝缘子串电位差和杆塔入地电流构建特征量,以2者的方向及其有效值作为识别判据,对雷击故障及未故障条件下的雷击类型进行辨识。  相似文献   

16.
特高压输电线路防雷,是保证特高压输电线路安全运行的重要环节之一。介绍并分析了利用规程法和电气几何模型法对1 000 kV特高压输电线路绕击、反击以及雷电直击中线进行雷击计算的结果,并据此提出了减小1 000 kV特高压输电线路雷击跳闸率的具体措施。  相似文献   

17.
大量线路运行经验和雷电跳闸故障统计资料表明,雷电绕击是引起500k V及以上超特高压电压等级输电线路雷击跳闸的主要原因。本文较为详细地介绍了目前用于分析输电线路绕击耐雷性能的规程法、电气几何模型法、改进电气几何模型法、先导发展模型法、基于分形理论的先导发展模型法等各种绕击屏蔽模型和计算方法,并就今后的研究方向与侧重点提出了自己的见解。  相似文献   

18.
宜华线±500 kV 直流输电线路具有塔身高、引雷面积大、易遭雷击的特点,需对其防雷性能进行科学的评估.文章采用改进的电气几何模型,计算了±500 kV 超高压直流输电线路的绕击闪络率,并利用 EMTP 建立并分析了反击耐雷性能研究模型,计算结果表明各种极线布置方式的绕击耐雷性能和反击耐雷性能存在差异,其中极线排列方式、地面倾角、保护角、杆塔高度和结构等因素对线路雷电性能有显著的影响  相似文献   

19.
云广±800kV特高压直流输电线路耐雷性能研究   总被引:2,自引:0,他引:2  
尚涛  杜忠东  张成巍  刘熙 《高电压技术》2008,34(10):2086-2089
云广±800 kV特高压直流输电线路工程是世界上第1个±800 kV、输电容量5 GW的特高压、大容量直流输电工程。所处地区属于雷击多发、易发区,防雷任务十分艰巨。为此结合特高压输电线路特点,建立了基于ATP-EMTP仿真软件的特高压直流输电线路反击仿真模型;依据改进电气几何模型,建立输电线路的屏蔽模型。计算结果表明:云广线路反击耐雷水平较高,反击闪络率较低;绕击闪络率较高,应该在云广线路中采用负的保护角;当杆塔升高到很高(>60 m),或地面倾角很大(>20°)时,应该考虑采用安装防绕击避雷针,架设耦合地线等防雷措施。  相似文献   

20.
输电线路因雷击引起的跳闸故障较多,文中对铜陵地区220kV输电线路雷击跳闸进行故障统计,分析影响线路反击、绕击跳闸的接地电阻、绝缘配置、杆塔高度、地形、保护角等因素;并针对不同的因素,对输电线路的运行维护提出相应的防雷措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号