首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NAD(P)+-dependent aldehyde dehydrogenase (EC 1.2.1.5) and aspartase (EC 4.3.1.1) in the cells of an atypical psychrophile from Antarctic seawater, Cytophaga sp. KUC-1, were paradoxically thermostable, although they derived from a psychrophile. Both enzymes showed the highest activity at about 55 °C, and also active even under cold conditions. The enzymes contained more Ile residues than the enzymes from mesophiles. The Ile/Ile + Val + Leu ratio of the Cytophaga thermostable enzymes was much higher than that of the enzymes from mesophiles. As compared with the enzymes from other microorganisms, the Cytophaga thermostable enzymes have the structural differences in the C-terminal region of the enzymes. Therefore, the C-terminal region might be important for the paradoxical thermostability of the enzymes. The psychrophilic microorganism produces not only psychrophilic enzyme, but thermostable enzyme with psychrophilicity. Therefore, the psychrophilic microorganism is one of the candidates for isolation of novel biocatalysts, which have potential for various industrial applications.  相似文献   

2.
Abstract The newly-isolated extremely thermophilic Bacillus sp. strain Wai28A5, able to grow at 70°C on tripalmitin and other triglycerides, possessed a p - nitrophenyl-palmitate esterase activity with a half-life of 60 min at 70°C and 12 min at 85°C. This activity was produced during exponential growth on tripalmitin, and the level of activity decreased once growth stopped. Transfer to tripalmitin-containing medium resulted in induction of the esterase activity. The activity was largely cell-associated (60 to 87% of the total activity). The p -nitrophenyl-palmitate esterase activity was proportional to the amount of culture added to enzyme assays and was destroyed by autoclaving, showing it to be enzymatic. A continuous assay for esterase activity was developed, and proved to be sensitive enough to detect 0.02 mU ml−1 esterase activity. Maximal esterase activity was at 400 μM p -nitrophenyl-palmitate and the optimum pH (at 70°C) was 8.7.  相似文献   

3.
Extremophiles - Thermostable proteases are important in biotechnological and industrial sectors, due to their stability against denaturing agents and chemicals. The feature that gives them such...  相似文献   

4.
目的:使用表达耐热蔗糖磷酸化酶的大肠杆菌重组工程菌E. coli BL21/pET-Spase和耐热纤维二糖磷酸化酶的大肠杆菌重组工程菌E. coli BL21/pET-Cpase,发酵培养后粗酶液作为催化剂,以价格低廉的蔗糖为原料合成红景天苷。方法:分别构建耐热蔗糖磷酸化酶和耐热纤维二糖磷酸化酶大肠杆菌重组菌,然后将重组菌、蔗糖、酪醇和磷酸混合,得到反应混合物,使反应混合物在45℃下转化,而产生红景天苷。结果:在耐热蔗糖磷酸化酶酶液1200 U/L、耐热纤维二糖磷酸化酶酶液500 U/L、蔗糖110 g/L、酪醇30 g/L和磷酸50 m M的浓度下,反应条件为pH 7.0、温度45℃、转速50转/分、反应时间32小时后,红景天苷浓度达到23.7 g/L。结论:本研究使用蔗糖磷酸化酶和纤维二糖磷酸化酶联合催化的工艺,成功地高收率合成了红景天苷。同时,本研究构建的耐热磷酸化酶酶活高,处理简单,为拓展糖苷类似物的合成提供了一种新的方法。  相似文献   

5.
A very high level of alkalophilic and thermostable pectinase and xylanase has been produced from newly isolated strains of Bacillus subtilis and Bacillus pumilus respectively. Enzyme production for pectinase was carried out under SSF using combinations of cheap agricultural residues while xylanase was produced under submerged fermentation using wheat bran as substrate to minimize the cost of production of these enzymes Among the various substrates tested, the highest yield of pectinase production was observed by using combination of WB + CW (6592 U/g of dry substrate) supplemented with 4% yeast extract when incubated at 37 °C for 72 h using deionized water of pH 7.0 as moistening agent. The biobleaching effect of these cellulase free enzymes on kraft pulp was determined. Both xylanase and pectinase showed stability over a broad range of pH from 6 to 10 and temperature from 55 to 70 °C. The bleaching efficiency of the pectinase and xylanase on kraft pulp was maximum after 150 min at 60 °C using enzyme dosage of 5 IU/ml of each enzyme at 10% pulp consistency with about 16% reduction in kappa number and 84% reduction in permanganate number. Enzyme treated pulp when subjected to CDED1D2 steps, 25% reduction in chlorine consumption and upto 19% reduction in consumption of chlorine dioxide was observed for obtaining the same %ISO brightness. Also an increase of 22 and 84% in whiteness and fluorescence respectively and a decrease of approximately 19% in the yellowness of the biotreated pulp were observed by pretreatment of the pulp with our enzymatic mixture.  相似文献   

6.
7.
Chang R  Vo TT  Finney NS 《Carbohydrate research》2006,341(12):1998-2004
We describe the first synthesis of the C1-phosphonate analog of UDP-GlcNAc, based on a new preparation of the corresponding glycosyl phosphonate. This C-glycosyl analog is shown to be a very weak inhibitor (Ki>10 mM) of fungal chitin synthase, indicating that at least in this case the replacement of the anomeric oxygen with a methylene group is not an innocent substitution.  相似文献   

8.
Nine cellulolytic bacterial strains were isolated from soil sample taken in southern Taiwan. Through 16S rRNA sequence matching; eight of those isolates belong to Cellulomonas sp., while the other one belongs to Cellulosimicrobium cellulans. The activity of cellulolytic enzymes (cellulases and xylanase) produced from those strains was mainly present extracellularly and the enzyme production was dependent on cellulosic substrates (xylan, rice husk and rice straw) used for growth. HPLC analysis confirmed the bacterial hydrolysis of these cellulosic substrates for soluble sugars production. The efficiency of fermentative H2 production from the enzymatically hydrolyzed rice husk was examined with seven H2-producing pure bacterial isolates. With an initial reducing sugar concentration of 0.36 g l−1, only Clostridium butyricum CGS5 exhibited efficient H2 production from the rice husk hydrolysates with a cumulative H2 production and H2 yield of 88.1 ml l−1 and 19.15 mmol H2 (g reducing sugar)−1 (or 17.24 mmol H2 (g cellulose)−1), respectively.  相似文献   

9.
Thermomyces lanuginosus, isolated from self-heated jute stacks in Bangladesh, was studied for production of high level of cellulase-free thermostable xylanase at 50°C using xylan. Optimization of the medium composition was carried out on shake-flask level using Graeco-Latin square technique. This increased xylanase production from 527 nkat ml−1 in the original medium to 9168–9502 nkat ml−1 in the optimized medium under optimized culture conditions e.g. initial medium pH (6.0–6.5), culture temperature (50°C) and time (5–6 d). The lag phase was very much shorter in the laboratory reactor compared to which existed in the shake cultures and 7111 nkat of xylanase activity were obtained per ml of culture filtrate at 60 h of cultivation. With a 15 min reaction time, the optimal pH and temperature for the xylanase activity were at 6.5 and 65°C, respectively. The enzyme was almost stable over a broad range of pH 3–9 at 20°C, with an optimum stability at pH 6.5. After 51 h heating at 50°C the enzyme retained 60%, 100% and 90% activity at pH 5.0, 6.5 and 8.0, respectively. The crude enzyme could hydrolyse xylan effectively and in only 6 h 67.3%, 54.0% and 49.2% saccharifications were achieved for 2%, 5% and 10% substrate levels, respectively. The principal product of hydrolysis was xylobiose together with smaller amounts of xylooligosaccharides (degree of polymerization 3–7) and xylose.  相似文献   

10.
The production of enzymes is a pursuit central to the modern biotechnology industry. Markets for traditional industrial enzymes continue to grow while the continued emphasis on biotechnological endeavours has generated demand for an ever increasing number of additional biocatalysts. The advent of genetic engineering has now facilitated the large-scale production of enzymes and other proteins which are produced naturally only in minute quantities. This development is particularly significant with regard to the production of enzymes and other proteins of therapeutic significance, which are now available in clinically useful quantities.

The level of downstream processing to which any enzyme is subjected is dependent upon its intended application. Industrial enzymes produced in bulk generally require little downstream processing, and hence are relatively crude preparations. Enzymes destined for therapeutic applications are subject to a far higher degree of downstream processing, often incorporating 3–4 chromatographic steps.

While enzymology is one of the longest established branches of the biochemical sciences, it continues to be an area of ongoing, active research. The continual discovery of new enzymes and a greater understanding of previously discovered enzymes and their functional significance suggests many novel applications for these catalytic activities. The intestinal production and utilization of enzymes will continue to be of central importance in the biotechnology industry.  相似文献   


11.
The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136 h of incubation at 50 °C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks.  相似文献   

12.
A very high level of cellulase-free, thermostable xylanase has been produced from newly isolated strain of Bacillus pumilus under submerged fermentation in a basal medium supplemented with wheat bran (2%, w/v) pH 8.0 and at 37 °C. After optimization of various production parameters, an increase of nearly 13-fold in xylanase production (5407 IU/ml) was achieved. The produced xylanase is stable in neutral to alkaline pH region at 70 °C. The suitability of this xylanase for use in the bioleaching of eucalyptus Kraft pulp was investigated. A xylanase dose of 5 IU/g of oven dried pulp of 10% consistency exhibited the optimum bleach boosting of the pulp at pH 7.0 and 60 °C after 180 min of treatment. An increase of 5% in brightness along with an increase of 21% and 28% in whiteness and fluorescence respectively, whereas 18% decrease in the yellowness of the biotreated pulp was observed. Enzyme treated pulp when subjected to chemical bleaching, resulted in 20% reduction in chlorine consumption and up to 10% reduction in consumption of chlorine dioxide. Also a reduction of about 16% in kappa number and 83% in permanganate number, along with a reduction in COD value and significant improvement in various pulp properties, viz. viscosity, tensile strength, breaking length, burst factor, burstness, tear factor and tearness were observed in comparison to the conventional chemical bleaching.  相似文献   

13.
Gangliosides in the range of 0.1-0.4 mM inhibited the UDP-N-acetylgalactosamine:GM3, N-acetylgalactosaminyl transferase (EC 2.4.1.79) of chicken retina. Other lipids such as phosphatidylethanolamine, sphingomyelin, sulfatides, and phosphatidic acid in concentrations similar to those of gangliosides did not affect the enzyme activity significantly. GM3 has an inhibition capability slightly less than that of gangliosides with two or three sialyl groups in their molecules, while asialo-GM1 is clearly less inhibitory. The inhibitory effect of a constant amount of GT1 ganglioside was higher at low concentrations of membrane preparation, but the inhibition was similar at different concentrations of the substrates GM3 or UDP-N-acetylgalactosamine and at all incubation times studied. The added gangliosides were found attached to the membranes. In this attached state they may act either as substrate or inhibitor. The inhibitory effect of gangliosides was not apparent when a mixture of Triton CF 54-Tween 80 was added to the incubation medium at concentrations greater than 0.33%.  相似文献   

14.
陈启民  武立红 《遗传学报》1993,20(3):272-278
本文以质粒pE194为载体亚克隆B.licheniformis热稳定α-淀粉酶基因,构建成重组质粒pNW102,通过噬菌体PBS1将它转导进入中温α-淀粉酶生产菌B.subtilis BF7658。B.subtilis BF7658(pNW102)经过长时间非许可温度处理,筛选得到2株热稳定α-淀粉酶稳定性表达的工程菌株。酶学分析显示同源重组具有热点,2株重组菌株B.subtilis BFNW产生的热稳定α-淀粉酶符合B.licheniformis产生的淀粉酶特性。  相似文献   

15.
细菌耐热植酸酶基因的克隆及表达*   总被引:1,自引:0,他引:1  
设计筛选培养基,从203株细菌菌株中筛选到四株可以分解植酸的菌株:SD01N,SD01X,SD01B和SD01D,设计植酸酶基因特异性引物P1和P2,分别以这四株菌的基因组DNA为模板进行扩增,其中菌株SD01N出现一条明显的扩增条带,大小约1.2kb。对PCR产物进行序列分析表明,该片段含有一个编码383个氨基酸的开放阅读框架。将该片段与载体pQE-30连接后转化大肠杆菌M15,得到重组菌株SDLiuTP01,对该菌株进行培养,经IPIG诱导基因表达,与携带空载体菌株相比较,在菌株SDLiuTP01中可检测到植酸酶活力。对重组菌株的植酸酶活力考察表明,该酶在25℃~95℃温度范围均具生物活性,最适反应温度为75℃,属于耐热性植酸酶。在各pH缓冲系统中反应结果,酶活力出现两个较高值,分别为pH4.6和pH7.5。  相似文献   

16.
A novel keratin-degrading bacterium Stenotrophomonas sp. strain D-1, isolated from deer fur, produced two types of extracellular proteins: proteolytic and disulfide bond-reducing. The results on the biochemical properties suggest that this protease belongs to the serine protease, and the disulfide bond-reducing protein could be the disulfide reductase type. None of these enzymes showed keratinolytic activity independently. However, after mixing of the two enzymes, the keratinolytic activity was increased tremendously (more than 50-fold) over that of the protease only. This keratinolytic activity was more than 2-fold higher than that of the combination with proteinase K (also known for its high keratinolytic activity). Since the two enzymes discovered in this study acted cooperatively and resulted in higher keratinolytic activity, a new mechanism of keratin degradation has been revealed. To our knowledge, this is the first report on the cooperative action of two enzymes resulting in the effective degradation of keratin.  相似文献   

17.
Extracellular enzymes of microorganisms play an important role in the decomposition of macromolecules in the composting process. In this study, the effects of Tween 80 and rhamnolipid on the extracellular amylase, carboxymethyl cellulose enzyme (CMCase), xylanase and protease of Penicillium simplicissimum isolated from compost were investigated during solid-state fermentation. The results showed that the enzyme activities of amylase, CMCase and xylanase were increased by Tween 80 and rhamnolipid, which, however, had a negative effect on the protease production. The stimulative effects on the three enzymes were quite different during the whole fermentation process. Tween 80 and rhamnolipid also increased the fungal biomass slightly. As a result of the enhanced enzyme activities, the organic matter were also improved to different extents by both surfactants, and the decomposition rates of hemicellulose and cellulose were increased about 8.0% and 11.6% by Tween 80 at best, respectively, as well as 5% and 5.5% by rhamnolipid.  相似文献   

18.
Applications of enzymes in synthetic carbohydrate chemistry   总被引:1,自引:0,他引:1  
Abstract: By photosynthesis 200 billion tons of glucose are formed per annum most of which remains in the sugar state. Thus, the well-known properties of saccharides as the basis for structural materials and energy stores is well established. Increasingly, focus is being addressed to their functions as recognition molecule. Therefore, carbohydrate chemistry became en vogue again as documented by classical syntheses of complex hetero-oligosaccharides employing protecting and activating group chemistry. In recent years enzymatic methods for acylation and deacylation in saccharide chemistry came into use. Novel saccharides could be approached following aldolase-catalyzed de novo syntheses. The very complex task of stereospecific glycosylation was addressed by use of enzymes. With glycohydrolases via transglycosylation as well as with glycosyltransferases including cofactor regenerating circles advances were made. Modified acceptor and also donor substrates allowed access to oligosaccharides in preparative quantities. This paper will discuss these modern developments and will focus on some selected examples from others' and our own laboratory.  相似文献   

19.
Cellulose degrading enzymes and their potential industrial applications   总被引:41,自引:0,他引:41  
Bioconversion of cellulose to soluble sugars and glucose is catalyzed by a group of enzymes called cellulases. Microorganisms including fungi, bacteria and actinomycetes produce mainly three types of cellulase components—endo-1,4-β-D-glucanase, exo-1,4-β-D-glucanase and β-glucosidase—either separately or in the form of a complex. Over the last several decades, cellulases have become better understood at a fundamental level; nevertheless, much remains to be learnt. The tremendous commercial potential of cellulases in a variety of applications remains the driving force for research in this area. This review summarizes the present state of knowledge on microbial cellulases and their applications.  相似文献   

20.
Bacteria and other fungi are industrially cultivated in a variety of ways for the commercial production of some 25 enzymes utilized in many industries ranging from the conversion of starch to fermentable sugars, through chill-proofing of beer to bating of hides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号