首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Peng J  Richards DE  Moritz T  Ezura H  Carol P  Harberd NP 《Planta》2002,214(4):591-596
Bioactive gibberellin (GA) is an essential regulator of vascular plant development. The GAI gene of Arabidopsis thaliana (L.) Heynh. encodes a product (GAI) that is involved in GA signalling. The dominant mutant gai allele encodes an altered product (gai) that confers reduced GA responses, dwarfism, and elevated endogenous GA levels. Recessive, presumed loss-of-function alleles of GAI confer normal height and resistance to the GA biosynthesis inhibitor paclobutrazol. One explanation for these observations is that GAI is a growth repressor whose activity is opposed by GA, whilst gai retains a constitutive repressor activity that is less affected by GA. Previously, we described gai-t6, a mutant allele which contains an insertion of a maize Ds transposable element into gai. Here we describe the molecular and physiological characterization of two further alleles (gai-t5, gai-t7) identified during the Ds mutagenesis experiment. These alleles confer paclobutrazol resistance and normal endogenous GA levels. Thus the phenotype conferred by gai-t5, gai-t6 and gai-t7 is not due to elevated GA levels, but is due to loss of gai, a constitutively active plant growth repressor.  相似文献   

2.
King KE  Moritz T  Harberd NP 《Genetics》2001,159(2):767-776
The growth of Arabidopsis thaliana is quantitatively regulated by the phytohormone gibberellin (GA) via two closely related nuclear GA-signaling components, GAI and RGA. Here we test the hypothesis that GAI and RGA function as "GA-derepressible repressors" of plant growth. One prediction of this hypothesis is that plants lacking GAI and RGA do not require GA for normal stem growth. Analysis of GA-deficient mutants lacking GAI and RGA confirms this prediction and suggests that in the absence of GAI and RGA, "growth" rather than "no growth" is the default state of plant stems. The function of the GA-signaling system is thus to act as a control system regulating the amount of this growth. We also demonstrate that the GA dose dependency of hypocotyl elongation is altered in mutants lacking GAI and RGA and propose that increments in GAI/RGA repressor function can explain the quantitative nature of GA responses.  相似文献   

3.
4.
5.
Wu J  Kong X  Wan J  Liu X  Zhang X  Guo X  Zhou R  Zhao G  Jing R  Fu X  Jia J 《Plant physiology》2011,157(4):2120-2130
Dominance, semidominance, and recessiveness are important modes of Mendelian inheritance. The phytohormone gibberellin (GA) regulates many plant growth and developmental processes. The previously cloned semidominant GA-insensitive (GAI) genes Reduced height1 (Rht1) and Rht2 in wheat (Triticum aestivum) were the basis of the Green Revolution. However, no completely dominant GAI gene has been cloned. Here, we report the molecular characterization of Rht-B1c, a dominant GAI allele in wheat that confers more extreme characteristics than its incompletely dominant alleles. Rht-B1c is caused by a terminal repeat retrotransposons in miniature insertion in the DELLA domain. Yeast two-hybrid assays showed that Rht-B1c protein fails to interact with GA-INSENSITIVE DWARF1 (GID1), thereby blocking GA responses and resulting in extreme dwarfism and pleiotropic effects. By contrast, Rht-B1b protein only reduces interaction with GID1. Furthermore, we analyzed its functions using near-isogenic lines and examined its molecular mechanisms in transgenic rice. These results indicated that the affinity between GID1 and DELLA proteins is key to regulation of the stability of DELLA proteins, and differential interactions determine dominant and semidominant gene responses to GA.  相似文献   

6.
Gibberellic acid (GA) promotes seed germination, elongation growth, and flowering time in plants. GA responses are repressed by DELLA proteins, which contain an N-terminal DELLA domain essential for GA-dependent proteasomal degradation of DELLA repressors. Mutations of or within the DELLA domain of DELLA repressors have been described for species including Arabidopsis thaliana, wheat (Triticum aestivum), maize (Zea mays), and barley (Hordeum vulgare), and we show that these mutations confer GA insensitivity when introduced into the Arabidopsis GA INSENSITIVE (GAI) DELLA repressor. We also demonstrate that Arabidopsis mutants lacking the three GA INSENSITIVE DWARF1 (GID1) GA receptor genes are GA insensitive with respect to GA-promoted growth responses, GA-promoted DELLA repressor degradation, and GA-regulated gene expression. Our genetic interaction studies indicate that GAI and its close homolog REPRESSOR OF ga1-3 are the major growth repressors in a GA receptor mutant background. We further demonstrate that the GA insensitivity of the GAI DELLA domain mutants is explained in all cases by the inability of the mutant proteins to interact with the GID1A GA receptor. Since we found that the GAI DELLA domain alone can mediate GA-dependent GID1A interactions, we propose that the DELLA domain functions as a receiver domain for activated GA receptors.  相似文献   

7.
Plant growth is regulated by bioactive gibberellin (GA), although there is an unexplained diversity in the magnitude of the GA responses exhibited by different plant species. GA acts via a group of orthologous proteins known as the DELLA proteins. The Arabidopsis genome contains genes encoding five different DELLA proteins, the best known of which are GAI and RGA. The DELLA proteins are thought to act as repressors of GA-regulated processes, whilst GA is thought to act as a negative regulator of DELLA protein function. Recent experiments have shown that GA induces rapid disappearance of nuclear RGA, SLR1 and SLN1 (DELLA proteins from rice and barley), suggesting that GA signalling and degradation of DELLA proteins are coupled. However, RGL1, another Arabidopsis DELLA protein, does not disappear from the nucleus in response to GA treatment. Here, we present evidence suggesting that GAI, like RGL1, is stable in response to GA treatment, and show that transgenic Arabidopsis plants containing constructs that enable high-level expression of GAI exhibit a dwarf, GA non-responsive phenotype. Thus, GAI appears to be less affected by GA than RGA, SLR1 or SLN1. We also show that neither of the two putative nuclear localisation signals contained in DELLA proteins are individually necessary for nuclear localisation of GAI. The various DELLA proteins have different properties, and we suggest that this functional diversity may explain, at least in part, why plant species differ widely in their GA response magnitudes.  相似文献   

8.
9.
10.
11.
Many developmental and environmental signals are transduced through changes in intracellular calcium concentrations, yet only a few calcium-binding proteins have been identified in plants. Calcineurin B-like (CBL) proteins are calcium-binding proteins that are thought to function as plant signal transduction elements. RNA profiling using a rice (Oryza sativa cv Nipponbare) oligonucleotide microarray was used to monitor gene expression in de-embryonated rice grains. This analysis showed that a putative rice CBL gene responded to gibberellic acid, but not abscisic acid, treatment. The CBL gene family in rice contains at least 10 genes and these have extensive similarity to the CBLs of Arabidopsis (Arabidopsis thaliana). In yeast (Saccharomyces cerevisiae) two-hybrid assays, rice CBLs interact with the kinase partners of Arabidopsis CBLs. Only one rice CBL gene, OsCBL2, is up-regulated by GA in the aleurone layer. A homolog with 91% sequence identity to OsCBL2 was cloned from barley (Hordeum vulgare cv Himalaya), and designated HvCBL2. We examined the localization and function of OsCBL2 and HvCBL2 in rice and barley aleurone because changes in cytosolic calcium have been implicated in the response of the aleurone cell to GA. Green fluorescent protein translational fusions of OsCBL2 and OsCBL3 were localized to the tonoplast of aleurone cell protein storage vacuoles and OsCBL4-green fluorescent protein was localized to the plasma membrane. Data from experiments using antisense expression of OsCBL2 and HvCBL2 are consistent with a role for OsCBL2 in promoting vacuolation of barley aleurone cells following treatment with GA.  相似文献   

12.
Arabinogalactan proteins (AGPs) are highly glycosylated extracellular glycoproteins playing important roles in plant growth and development. We have previously reported the possibility that AGPs are involved in the induction of alpha-amylase by gibberellin (GA) in barley aleurone layers by using the beta-glucosyl Yariv reagent (beta-GlcY), which has been presumed to specifically bind AGPs. In this present study, we isolated beta-GlcY-reactive proteins from rice bran rich in aleurone cells. The N-terminal sequences of classical AGP and AG peptides were determined from hydrophilic fractions obtained by reversed phase HPLC. Interestingly, a novel non-specific lipid transfer protein-like protein (OsLTPL1) and a novel early nodulin-like protein (OsENODL1) were also identified in the more hydrophobic fractions from HPLC as beta-GlcY-reactive proteins. Expression analysis of the genes coding for these proteins was performed. While classical AGP, AG peptides and OsLTPL1 were expressed in various parts of rice, OsENODL1 showed temporally and spatially specific expression in the aleurone layers. This new beta-GlcY-reactive protein is a promising candidate for the extracellular signaling factors of GA action in cereal seeds. Furthermore, the possibility that proteins with the AG glycomodule might react with beta-GlcY may broaden the definition of AGPs.  相似文献   

13.
The rice (Oryza sativa) DELLA protein SLR1 acts as a repressor of gibberellin (GA) signaling. GA perception by GID1 causes SLR1 protein degradation involving the F-box protein GID2; this triggers GA-associated responses such as shoot elongation and seed germination. In GA-insensitive and GA biosynthesis mutants, SLENDER RICE1 (SLR1) accumulates to high levels, and the severity of dwarfism is usually correlated with the level of SLR1 accumulation. An exception is the GA-insensitive F-box mutant gid2, which shows milder dwarfism than mutants such as gid1 and cps even though it accumulates higher levels of SLR1. The level of SLR1 protein in gid2 was decreased by loss of GID1 function or treatment with a GA biosynthesis inhibitor, and dwarfism was enhanced. Conversely, overproduction of GID1 or treatment with GA(3) increased the SLR1 level in gid2 and reduced dwarfism. These results indicate that derepression of SLR1 repressive activity can be accomplished by GA and GID1 alone and does not require F-box (GID2) function. Evidence for GA signaling without GID2 was also provided by the expression behavior of GA-regulated genes such as GA-20oxidase1, GID1, and SLR1 in the gid2 mutant. Based on these observations, we propose a model for the release of GA suppression that does not require DELLA protein degradation.  相似文献   

14.
When the gibberellin (GA) receptor GIBBERELLIN INSENSITIVE DWARF 1 (GID1) binds to GA, GID1 interacts with DELLA proteins, repressors of GA signaling. This interaction inhibits the suppressive function of DELLA protein and thereby activates the GA response. However, how DELLA proteins exert their suppressive function and how GID1s inhibit suppressive function of DELLA proteins is unclear. By yeast one-hybrid experiments and transient expression of the N-terminal region of rice DELLA protein (SLR1) in rice callus, we established that the N-terminal DELLA/TVHYNP motif of SLR1 possesses transactivation activity. When SLR1 proteins with various deletions were over-expressed in rice, the severity of dwarfism correlated with the transactivation activity observed in yeast, indicating that SLR1 suppresses plant growth through transactivation activity. This activity was suppressed by the GA-dependent GID1-SLR1 interaction, which may explain why GA responses are induced in the presence of GA. The C-terminal GRAS domain of SLR1 also exhibits a suppressive function on plant growth, possibly by directly or indirectly interacting with the promoter region of target genes. Our results indicate that the N-terminal region of SLR1 has two roles in GA signaling: interaction with GID1 and transactivation activity.  相似文献   

15.
GAMYB is a component of gibberellin (GA) signaling in cereal aleurone cells, and has an important role in flower development. However, it is unclear how GAMYB function is regulated. We examined the involvement of a microRNA, miR159, in the regulation of GAMYB expression in cereal aleurone cells and flower development. In aleurone cells, no miR159 expression was observed with or without GA treatment, suggesting that miR159 is not involved in the regulation of GAMYB and GAMYB-like genes in this tissue. miR159 was expressed in tissues other than aleurone, and miR159 over-expressors showed similar but more severe phenotypes than the gamyb mutant. GAMYB and GAMYB-like genes are co-expressed with miR159 in anthers, and the mRNA levels for GAMYB and GAMYB-like genes are negatively correlated with miR159 levels during anther development. Thus, OsGAMYB and OsGAMYB-like genes are regulated by miR159 in flowers. A microarray analysis revealed that OsGAMYB and its upstream regulator SLR1 are involved in the regulation of almost all GA-mediated gene expression in rice aleurone cells. Moreover, different sets of genes are regulated by GAMYB in aleurone cells and anthers. GAMYB binds directly to promoter regions of its target genes in anthers as well as aleurone cells. Based on these observations, we suggest that the regulation of GAMYB expression and GAMYB function are different in aleurone cells and flowers in rice.  相似文献   

16.
17.
18.
Gibberellin (GA) is a classical plant hormone involved in many aspects of plant growth and development. A family of five homologs called the DELLA proteins, comprised of GAI, RGA, RGL1, RGL2 and RGL3, were recently found to act as critical GA signal mediators in Arabidopsis. Reports have shown that GAI and RGA are coupled together to repress stem elongation growth whereas RGL2 is a major negative regulator of seed germination. GA down-regulates DELLA proteins through protein degradation likely via the proteasome pathway. The conserved and functionally important DELLA domain is responsible for protein stability in response to GA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号