首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using computer simulations, it is shown how burst-mode electronic equalization in the optical line termination of a passive optical network (PON) allows 10 Gb/s in the upstream direction with directly modulated distributed-feedback lasers. This allows achieving 10 Gb/s using cost-effective components at the optical network unit. Fast convergence of the equalizer coefficients is achieved during the preamble of each burst using the recursive least squares algorithm instead of the least mean squares algorithm. With a nine-tap feed-forward equalizer, two-tap decision feedback equalizer, a physical reach of 38 km and a splitting factor of 32 can be achieved in the 1.5-$mu$m window, exceeding requirements for deployed PONs.   相似文献   

2.
In this paper, we address the design and management issues in routing a mixture of OC-192 and OC-768 streams in wavelength-routed optical networks. We assume that fiber links in the network are heterogeneous with respect to their transmission capability (i.e., links are designed to handle a given maximum bit-rate imposed by regenerator spacing).We investigate the issues of routing connection demands of various bit-rate requirements in such heterogeneous networks. In this environment, we introduce the routing of multirate traffic (RMT) problem. The RMT problem is informally defined as the process of finding the best routing which maximizes the total bandwidth carried in the network, for a set of sessions, within a given TDM equipment budget. We propose a two-phase optimization scheme (two-phase RMT). This scheme first obtains a basis solution used in routing 40-Gb/s traffic only on OC-768 capable links without the use of TDM equipment. In the second phase, an iterative routing, rerouting, and resource allocation step is used to optimize the total bandwidth carried in the network, while allowing 40-Gb/s traffic to be routed on OC-768 incapable links by the proper installation of TDM multiplexors and demultiplexers at some strategic locations in the network. Numerical results reveal the following:. 1) the two-phase RMT optimization algorithm provides substantial savings in terms of both the total TDM equipment installed and number of wavelengths used; 2) noticeable enhancements of the bandwidth utilization and the TDM budget are observed when the route-optimization takes into account the transmission quality of the links; and 3) the use of intermediate TDM multiplexing/demultiplexing functions provides substantial savings, in terms of the total number of channels, over the source-splitting scheme.  相似文献   

3.
We have proposed and experimentally demonstrated a novel architecture for orthogonal frequency-division- multiplexing (OFDM) wavelength-division-multiplexing passive optical network with centralized lightwave. In this architecture, 16 quadrature amplitude modulation intensity-modulated OFDM signals at 10 Gb/s are utilized for downstream transmission. A wavelength-reuse scheme is employed to carry the upstream data to reduce the cost at optical network unit. By using one intensity modulator, the downstream signal is remodulated for upstream on–off keying (OOK) data at 2.5 Gb/s based on its return-to-zero shape waveform. We have also studied the fading effect caused by double-sideband (DSB) downstream signals. Measurement results show that 2.5-dB power penalty is caused by the fading effect. The fading effect can be removed when the DSB OFDM downstream signals are converted to single sideband (SSB) after vestigial filtering. The power penalty is negligible for both SSB OFDM downstream and the remodulated OOK upstream signals after over 25-km standard single-mode-fiber transmission.   相似文献   

4.
High-performance and low-cost 40-Gb/s optical modules using four different wavelength uncooled 10-Gb/s distributed-feedback (DFB) lasers are proposed and demonstrated. The 40-Gb/s optical module was integrated with coarse wavelength division multiplexing (CWDM) thin-film filters which enabled four 10-Gb/s transmission channels output through a single fiber. The 10-Gb/s DFB laser was packaged by commercialized low-cost coaxial TO-Can technology. The results of the 40-Gb/s optical module showed that the output optical power was above ${-}1$ dBm per channel and the system power budget was 12 dB. The transmission distance with a single-mode fiber reached more than 30 km at a bit-error-rate of $10^{{-}9}$. Compared with conventional 40-Gb/s optical modules, the module is easy to fabricate and is low cost. This proposed high-performance 40-Gb/s CWDM optical module demonstrates not only the feasibility of a 30 km transmission, but also shows the low-cost possibility of ensuring the application of WDM-passive optical network fiber-to-the-home systems.   相似文献   

5.
We demonstrate all-optical recognition of a byte pattern embedded in phase-shift-keyed data streaming at 40 Gb/s. We use matched filtering to generate an autocorrelation pulse indicating the pattern matching. Matched filtering is implemented using a reconfigurable silica planar-lightwave-circuit optical delay-line filter. We show excellent discrimination against spurious patterns consistent with the theoretical predictions.  相似文献   

6.
We propose a novel radio-over-fiber system to provide full-duplex services by using optical differential phase-shift keying modulation format at the central station for downstream and on-off keying remodulation of the downlink carrier at the base station (BS) for upstream. The optical carrier suppression modulation scheme is employed to simultaneously generate and up-convert 40-GHz optical millimeter wave. As the same optical carrier is used for both uplink and downlink, no additional light source is required at the BS, which greatly reduces the cost and simplifies the overall system. Simulations and experimental results show that the bidirectional 2.5-Gb/s data is successfully transmitted over 40-km single-mode fiber (SMF-28) with less than 2-dB power penalty  相似文献   

7.
We propose a novel scheme of Rayleigh backscattering noise-eliminated, long-reach, single-fiber, full-duplex, centralized wavelength-division multiplexed passive optical network with differential quadrature phase-shift keying (DPSK) downstream and remodulated upstream using an optical carrier-suppressed subcarrier-modulation (OCS-SCM) technique and optical interleaver. The error-free transmissions of 10-Gb/s downstream and 2.5-Gb/s upstream signals are experimentally demonstrated over 115-km single-fiber bidirectional SMF-28 with less than 0.5 and 1.9 dB power penalties, respectively.   相似文献   

8.
A real-time receiver for the coherent optical orthogonal frequency-division multiplexing (CO-OFDM) detection is realized in a field-programmable gate array (FPGA). Each building block of the CO-OFDM receiver, such as symbol synchronization, channel estimation, and phase estimation is described and discussed in respect of special technical requirements of real-time implementation. The real-time receiver is successfully demonstrated with a receiver sampling rate of 2.5-Gsamples/s to receive a subband of 53.3-Gb/s multiband CO-OFDM signal. The measured bit error rate (BER) is as low as $3.7times 10^{-8}$ which is a record in real-time or offline CO-OFDM demonstration.   相似文献   

9.
Coherent Optical 25.8-Gb/s OFDM Transmission Over 4160-km SSMF   总被引:1,自引:0,他引:1  
We discuss coherent optical orthogonal frequency division multiplexing (CO-OFDM) as a suitable modulation technique for long-haul transmission systems. Several design and implementation aspects of a CO-OFDM system are reviewed, but we especially focus on phase noise compensation. As conventional CO-OFDM transmission systems are very sensitive to laser phase noise a novel method to compensate for phase noise is introduced. With the help of this phase noise compensation method we show continuously detectable OFDM transmission at 25.8 Gb/s data rate (20 Gb/s after coding) over 4160-km SSMF without dispersion compensation.  相似文献   

10.
This correspondence compares OOK and low-order PPM signaling formats in terms of bit error probabilities versus required signal counts per bit. The results show that QPPM requires 3 dB less signal than OOK, while BPPM requires the same or slightly more than OOK for the same performance. Optimum APD gain values are from 200 to 400. When using QPPM,k_{eff} = 0.006, and optimum gain, 60 signal counts/bit are required at 500 Mbits/s for a 10-6bit error probability.  相似文献   

11.
A signal remodulation scheme of 10-Gb/s differential phase-shift keying(DPSK) downstream and 10-Gb/s on-off keying(OOK) upstream using a semiconductor optical amplifier(SOA) and a Mach-Zehnder intensity modulator(MZ-IM) at the optical networking unit(ONU) side for wavelength division multiplexed passive optical network(WDM PON) is proposed.Simulation results indicate that error-free operation can be achieved in a 20-km transmission,and the receiver sensitivity of return-to-zero differential phase-shift keying(RZ-DPSK) is higher than nonreturn-to-zero differential phase-shift keying(NRZ-DPSK) in the proposed scheme.  相似文献   

12.
We investigate 40-Gb/s cost-efficient transmitter for access and metro networks. This 40-Gb/s transmitter comprises a standard directly modulated distributed-feedback (DFB) laser and a subsequent optical filter. Large dispersion tolerance of this transmitter is realized by chirp control through the phase correlation between adjacent bits for the destructive interference in order to erase the power of “0” bits while enhancing the extinction ratio. The chirp model of the DFB laser and the optimum parameters of the optical filter have been numerically analyzed. The chirp-managed 42.8-Gb/s transmission over 20-km standard single mode fiber (SSMF or SMF-28) without dispersion compensation and a centralized lightwave WDM-PON system are experimentally demonstrated. We have also realized the transmission over 100-m graded index plastic optical fiber (GI-POF). Moreover, the application in the metro network over 240-km SSMF or SMF-28 has also been investigated in this paper.   相似文献   

13.
We report 40-Gb/s capability of 50-mum core plastic optical fiber using differential modal delay measurements and power penalty due to intersymbol interference computations. The results are explained via a comprehensive multimode fiber model that includes mode coupling (MC) and differential modal attenuation (DMA). We show that strong MC can enable 40-Gb/s transmission for reach in excess of 100 m even in the presence of irregularities in the refractive index profile that prevent 10-Gb/s performance without MC. Furthermore, we show that DMA effects are negligible and that the mode power distributions are not a good indicator of bandwidth.  相似文献   

14.
We propose and demonstrate a novel wavelength remodulation scheme using differential phase-shift keying (DPSK) modulation format in both downstream and upstream signals for ldquocolorlessrdquo dense wavelength-division-multiplexed (DWDM) passive optical networks (PONs). The scheme enables high extinction ratio in both downstream and upstream remodulated signals. Error-free operation was achieved in a 20-km-reach 10-Gb/s DWDM-PON without dispersion compensation. Timing misalignment tolerance between downstream and upstream remodulated signals and maximum launched optical power for the proposed scheme are studied. Comparison with other wavelength remodulation schemes for DWDM-PONs is also performed, showing the proposed scheme can be a potential candidate for next-generation wavelength reuse DWDM-PONs.  相似文献   

15.
Heterodyne detection of 10-Gb/s nonreturn-to-zero (NRZ) on-off keying and NRZ differential phase-shift keying is demonstrated. The noise performance of the heterodyne receiver with and without the use of an optical preamplifier is experimentally investigated  相似文献   

16.
40-Gb/s tandem electroabsorption modulator   总被引:3,自引:0,他引:3  
In this letter, we have developed a tandem electroabsorption modulator with an integrated semiconductor optical amplifier that is capable of both nonreturn-to-zero and return-to-zero (RZ) data transmission at 40 Gb/s. The tandem modulator consists of a broad-band data encoder and a narrow-band pulse carver. The pulse carver is able to produce 5-ps pulses with more than 20 dB of extinction. The on-chip semiconductor optical amplifier provides up to 8.5 dB of fiber-to-fiber gain and enables the modulator to be operated with zero insertion loss. Devices have been realized with greater than 40-GHz bandwidth, and 13-dB dynamic extinction for a 2.5-V swing. For optimized designs bandwidths of nearly 60 GHz: have been realized. Using these devices penalty free RZ data transmission over a 100-kin dispersion compensated fiber link has been demonstrated with a received power sensitivity of -29 dBm  相似文献   

17.
We experimentally demonstrate a scheme for all-optical reshaping at 40 Gb/s that is wavelength preserving and transparent to both nonreturn-to-zero and return-to-zero on-off keying signals. Eye-diagram reshaping is confirmed by means of bit-error rate versus threshold measurements on both modulation formats. The scheme is based on cross-gain compression in an semiconductor optical amplifier (SOA) and uses two SOAs that are not in interferometric configuration. Due to its working principle, this method is polarization-independent and suitable, in principle, for higher bit rates.  相似文献   

18.
A 40-Gb/s packaging solution that uses low-cost wire-bonded plastic ball grid array (WB-PBGA) technology is presented. Since such a high speed was beyond the reach of conventional package designs, a new design methodology was proposed-discontinuity cancellation in both signal-current and return-current paths. The 3-D structures of bonding wires, vias, solder ball pads, and power distribution networks were optimized for the discontinuity cancellation. Two versions of four-layer WB-PBGA packages were designed; one according to the proposed methodology and the other conventionally. The proposed design methodology was verified with full-wave simulation, passive bandwidth measurement, time domain reflectometry (TDR), eye diagram measurement, and jitter analysis.  相似文献   

19.
Orthogonal frequency-division multiplexing (OFDM) is a multicarrier modulation format in which the data are transmitted with a set of orthogonal subcarriers. Recently, this modulation format has been actively explored in the field of optical communications to take advantages of its high spectral efficiency and resilience to chromatic and polarization dispersion. However, to realize the optical OFDM at 100 Gb/s and beyond requires extremely high electronic bandwidth for the electronic signal processing elements. In this paper, we investigate orthogonal-band-multiplexed OFDM (OBM-OFDM) as a suitable modulation and multiplexing scheme for achieving bandwidth scalable and spectral efficient long-haul transmission systems. The OBM-OFDM signal can be implemented in either RF domain, or optical domain, or a combination of both domains. Using the scheme of OBM-OFDM, we show the successful transmission of 107 Gb/s data rate over 1000-km standard single-mode fiber (SSMF) without optical dispersion compensation and without Raman amplification. The demonstrated OBM-OFDM system is realized in optical domain which employs 2 $times$ 2 MIMO-OFDM signal processing and achieves high optical spectral efficiency of 3.3 bit/s/Hz using 4-QAM encoding. Additionally, we perform numerical simulation of 107-Gb/s CO-OFDM transmission for both single-channel and wavelength-division-multiplexed (WDM) systems. We find that the $Q$ -factor of OBM-OFDM measured using uniform filling of OFDM subbands is in fact more conservative, in particular, is 1.2 dB and 0.4 dB lower than using random filling for single-channel and WDM systems, respectively.   相似文献   

20.
An all-optical converter from nonreturn-to-zero (NRZ) to carrier-suppressed return-to-zero modulation format is proposed and experimentally demonstrated. The converter is based on cross gain and phase modulation in a semiconductor optical amplifier. Single- and multichannel operation is experimentally assessed at 40 Gb/s. In single-channel operation, the required optical signal-to-noise ratio for a bit-error rate of $10^{-9}$ is improved by 3 dB, in comparison to the input NRZ. Considering multichannel operation with two and four channels, this improvement decreases by only 0.6 and 1.5 dB, respectively.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号