首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A Banach space operator T is polaroid and satisfies Weyl’s theorem if and only if T is Kato type at points λ ∈ iso σ(T) and has SVEP at points λ not in the Weyl spectrum of T. For such operators T, f(T) satisfies Weyl’s theorem for every non-constant function f analytic on a neighborhood of σ(T) if and only if f(T) satisfies Weyl’s theorem.  相似文献   

2.
A Banach space operator T satisfies Weyl's theorem if and only if T or T has SVEP at all complex numbers λ in the complement of the Weyl spectrum of T and T is Kato type at all λ which are isolated eigenvalues of T of finite algebraic multiplicity. If T (respectively, T) has SVEP and T is Kato type at all λ which are isolated eigenvalues of T of finite algebraic multiplicity (respectively, T is Kato type at all λ∈isoσ(T)), then T satisfies a-Weyl's theorem (respectively, T satisfies a-Weyl's theorem).  相似文献   

3.
A Banach space operator TB(X) is said to be totally hereditarily normaloid, TTHN, if every part of T is normaloid and every invertible part of T has a normaloid inverse. The operator T is said to be an H(q) operator for some integer q?1, TH(q), if the quasi-nilpotent part H0(Tλ)=(Tλ)q(0) for every complex number λ. It is proved that if T is algebraically H(q), or T is algebraically THN and X is separable, then f(T) satisfies Weyl's theorem for every function f analytic in an open neighborhood of σ(T), and T satisfies a-Weyl's theorem. If also T has the single valued extension property, then f(T) satisfies a-Weyl's theorem for every analytic function f which is non-constant on the connected components of the open neighborhood of σ(T) on which it is defined.  相似文献   

4.
A Banach space operator TB(X) satisfies Browder's theorem if the complement of the Weyl spectrum σw(T) of T in σ(T) equals the set of Riesz points of T; T is polaroid if the isolated points of σ(T) are poles (no restriction on rank) of the resolvent of T. Let Φ(T) denote the set of Fredholm points of T. Browder's theorem transfers from A,BB(X) to S=LARB (resp., S=AB) if and only if A and B (resp., A and B) have SVEP at points μΦ(A) and νΦ(B) for which λ=μνσw(S). If A and B are finitely polaroid, then the polaroid property transfers from AB(X) and BB(Y) to LARB; again, restricting ourselves to the completion of XY in the projective topology, if A and B are finitely polaroid, then the polaroid property transfers from AB(X) and BB(Y) to AB.  相似文献   

5.
We prove that if either T or T has the single-valued extension property, then the spectral mapping theorem holds for B-Weyl spectrum. If, moreover T is isoloid, and generalized Weyl's theorem holds for T, then generalized Weyl's theorem holds for f(T) for every fH(σ(T)). An application is given for algebraically paranormal operators.  相似文献   

6.
A Banach space operatorT ɛB(X) is polaroid,T ɛP, if the isolated points of the spectrum ofT are poles of the resolvent ofT. LetPS denote the class of operators inP which have have SVEP, the single-valued extension property. It is proved that ifT is polynomiallyPS andA ɛB(X) is an algebraic operator which commutes withT, thenf(T+A) satisfies Weyl’s theorem andf(T *+A *) satisfiesa-Weyl’s theorem for everyf which is holomorphic on a neighbourhood of σ(T+A).  相似文献   

7.
Let T be a bounded linear operator acting on a Banach space X such that T or its adjoint T has the single-valued extension property. We prove that the spectral mapping theorem holds for the B-Weyl spectrum, and we show that generalized Browder's theorem holds for f(T) for every analytic function f defined on an open neighborhood U of σ(T). Moreover, we give necessary and sufficient conditions for such T to satisfy generalized Weyl's theorem. Some applications are also given.  相似文献   

8.
It is proved that the operator Lie algebra ε(T,T) generated by a bounded linear operator T on Hilbert space H is finite-dimensional if and only if T=N+Q, N is a normal operator, [N,Q]=0, and dimA(Q,Q)<+∞, where ε(T,T) denotes the smallest Lie algebra containing T,T, and A(Q,Q) denotes the associative subalgebra of B(H) generated by Q,Q. Moreover, we also give a sufficient and necessary condition for operators to generate finite-dimensional semi-simple Lie algebras. Finally, we prove that if ε(T,T) is an ad-compact E-solvable Lie algebra, then T is a normal operator.  相似文献   

9.
Let X be a Banach space and E an order continuous Banach function space over a finite measure μ. We prove that an operator T in the Köthe-Bochner space E(X) is a multiplication operator (by a function in L(μ)) if and only if the equality T(gf,xx)=gT(f),xx holds for every gL(μ), fE(X), xX and xX.  相似文献   

10.
We find necessary and sufficient conditions for a Banach space operator T to satisfy the generalized Browder's theorem. We also prove that the spectral mapping theorem holds for the Drazin spectrum and for analytic functions on an open neighborhood of σ(T). As applications, we show that if T is algebraically M-hyponormal, or if T is algebraically paranormal, then the generalized Weyl's theorem holds for f(T), where fH((T)), the space of functions analytic on an open neighborhood of σ(T). We also show that if T is reduced by each of its eigenspaces, then the generalized Browder's theorem holds for f(T), for each fH(σ(T)).  相似文献   

11.
In this note we study the property (w), a variant of Weyl's theorem introduced by Rako?evi?, by means of the localized single-valued extension property (SVEP). We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which property (w) holds. We also relate this property with Weyl's theorem and with another variant of it, a-Weyl's theorem. We show that Weyl's theorem, a-Weyl's theorem and property (w) for T (respectively T*) coincide whenever T* (respectively T) satisfies SVEP. As a consequence of these results, we obtain that several classes of commonly considered operators have property (w).  相似文献   

12.
Consistent invertibility and Weyl's theorem   总被引:1,自引:0,他引:1  
A Banach space operator TB(X) may be said to be “consistent in invertibility” provided that for each SB(X), TS and ST are either both or neither invertible. The induced spectrum contributes the conditions equivalent to various forms of “Weyl's theorem”.  相似文献   

13.
A Hilbert space operator AB(H) is p-hyponormal, A∈(p-H), if |A|2p?|A|2p; an invertible operator AB(H) is log-hyponormal, A∈(?-H), if log(TT)?log(TT). Let dAB=δAB or ?AB, where δABB(B(H)) is the generalised derivation δAB(X)=AX-XB and ?ABB(B(H)) is the elementary operator ?AB(X)=AXB-X. It is proved that if A,B∈(?-H)∪(p-H), then, for all complex λ, , the ascent of (dAB-λ)?1, and dAB satisfies the range-kernel orthogonality inequality ‖X‖?‖X-(dAB-λ)Y‖ for all X∈(dAB-λ)-1(0) and YB(H). Furthermore, isolated points of σ(dAB) are simple poles of the resolvent of dAB. A version of the elementary operator E(X)=A1XA2-B1XB2 and perturbations of dAB by quasi-nilpotent operators are considered, and Weyl’s theorem is proved for dAB.  相似文献   

14.
Let A and B be (not necessarily unital or closed) standard operator algebras on complex Banach spaces X and Y, respectively. For a bounded linear operator A on X, the peripheral spectrum σπ(A) of A is the set σπ(A)={zσ(A):|z|=maxωσ(A)|ω|}, where σ(A) denotes the spectrum of A. Assume that Φ:AB is a map the range of which contains all operators of rank at most two. It is shown that the map Φ satisfies the condition that σπ(BAB)=σπ(Φ(B)Φ(A)Φ(B)) for all A,BA if and only if there exists a scalar λC with λ3=1 and either there exists an invertible operator TB(X,Y) such that Φ(A)=λTAT-1 for every AA; or there exists an invertible operator TB(X,Y) such that Φ(A)=λTAT-1 for every AA. If X=H and Y=K are complex Hilbert spaces, the maps preserving the peripheral spectrum of the Jordan skew semi-triple product BAB are also characterized. Such maps are of the form A?UAU or A?UAtU, where UB(H,K) is a unitary operator, At denotes the transpose of A in an arbitrary but fixed orthonormal basis of H.  相似文献   

15.
Let X be an infinite dimensional real reflexive Banach space with dual space X and GX, open and bounded. Assume that X and X are locally uniformly convex. Let T:XD(T)→2X be maximal monotone and strongly quasibounded, S:XD(S)→X maximal monotone, and C:XD(C)→X strongly quasibounded w.r.t. S and such that it satisfies a generalized (S+)-condition w.r.t. S. Assume that D(S)=LD(T)∩D(C), where L is a dense subspace of X, and 0∈T(0),S(0)=0. A new topological degree theory is introduced for the sum T+S+C, with degree mapping d(T+S+C,G,0). The reason for this development is the creation of a useful tool for the study of a class of time-dependent problems involving three operators. This degree theory is based on a degree theory that was recently developed by Kartsatos and Skrypnik just for the single-valued sum S+C, as above.  相似文献   

16.
Let X be a real reflexive Banach space with dual X. Let L:XD(L)→X be densely defined, linear and maximal monotone. Let T:XD(T)→X2, with 0∈D(T) and 0∈T(0), be strongly quasibounded and maximal monotone, and C:XD(C)→X bounded, demicontinuous and of type (S+) w.r.t. D(L). A new topological degree theory has been developed for the sum L+T+C. This degree theory is an extension of the Berkovits-Mustonen theory (for T=0) and an improvement of the work of Addou and Mermri (for T:XX2 bounded). Unbounded maximal monotone operators with are strongly quasibounded and may be used with the new degree theory.  相似文献   

17.
Let A be the generator of a cosine function on a Banach space X. In many cases, for example if X is a UMD-space, A+B generates a cosine function for each BL(D((ωA)1/2),X). If A is unbounded and , then we show that there exists a rank-1 operator BL(D(γ(ωA)),X) such that A+B does not generate a cosine function. The proof depends on a modification of a Baire argument due to Desch and Schappacher. It also allows us to prove the following. If A+B generates a distribution semigroup for each operator BL(D(A),X) of rank-1, then A generates a holomorphic C0-semigroup. If A+B generates a C0-semigroup for each operator BL(D(γ(ωA)),X) of rank-1 where 0<γ<1, then the semigroup T generated by A is differentiable and ‖T(t)‖=O(tα) as t↓0 for any α>1/γ. This is an approximate converse of a perturbation theorem for this class of semigroups.  相似文献   

18.
A Hilbert space operator A ∈ B(H) is said to be p-quasi-hyponormal for some 0 < p ? 1, A ∈ p − QH, if A(∣A2p − ∣A2p)A ? 0. If H is infinite dimensional, then operators A ∈ p − QH are not supercyclic. Restricting ourselves to those A ∈ p − QH for which A−1(0) ⊆ A∗-1(0), A ∈ p − QH, a necessary and sufficient condition for the adjoint of a pure p − QH operator to be supercyclic is proved. Operators in p − QH satisfy Bishop’s property (β). Each A ∈ p − QH has the finite ascent property and the quasi-nilpotent part H0(A − λI) of A equals (A − λI)-1(0) for all complex numbers λ; hence f(A) satisfies Weyl’s theorem, and f(A) satisfies a-Weyl’s theorem, for all non-constant functions f which are analytic on a neighborhood of σ(A). It is proved that a Putnam-Fuglede type commutativity theorem holds for operators in p − QH.  相似文献   

19.
We show that the conjugate T of an operator , with X and Y Banach spaces, satisfies the following dichotomy: either T preserves the nonconvergence of bounded martingales in Y, or there exists a compact operator such that the kernel N(T+K) fails the Radon-Nikodým property.  相似文献   

20.
Let X be a nonempty, convex and compact subset of normed linear space E (respectively, let X be a nonempty, bounded, closed and convex subset of Banach space E and A be a nonempty, convex and compact subset of X) and f:X×XR be a given function, the uniqueness of equilibrium point for equilibrium problem which is to find xX (respectively, xA) such that f(x,y)≥0 for all yX (respectively, f(x,y)≥0 for all yA) is studied with varying f (respectively, with both varying f and varying A). The results show that most of equilibrium problems (in the sense of Baire category) have unique equilibrium point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号