首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nowadays, gas welding applications on vehicle’s parts with robot manipulators have increased in automobile industry. Therefore, the speed of end-effectors of robot manipulator is affected on each joint during the welding process with complex trajectory. For that reason, it is necessary to analyze the noise and vibration of robot’s joints for predicting faults. This paper presents an experimental investigation on a robot manipulator, using neural network for analyzing the vibration condition on joints. Firstly, robot manipulator’s joints are tested with prescribed of trajectory end-effectors for the different joints speeds. Furthermore, noise and vibration of each joint are measured. And then, the related parameters are tested with neural network predictor to predict servicing period. In order to find robust and adaptive neural network structure, two types of neural predictors are employed in this investigation. The results of two approaches improved that an RBNN type can be employed to predict the vibrations on industrial robots.  相似文献   

2.
This paper presents a dual neural network for kinematic control of a seven degrees of freedom robot manipulator. The first network is a static multilayer perceptron with two hidden layers which is trained to mimic the Jacobian of a seven DOF manipulator. The second network is a recurrent neural network which is used for determining the inverse kinematics solutions of the manipulator; The redundancy is used to minimize the joint velocities in the least squares sense. Simulation results show relatively good comparison between the outputs of the actual Jacobian matrix and multilayer neural network. The first network maps motions of the seven joints of the manipulator into 42 elements of the Jacobian matrix, with surprisingly smaller computations than the actual trigonometric function evaluations. A new technique, input-pattern-switching, is presented which improves the global training of the static network. The recurrent network was designed to work with the neural network approximation of the Jacobian matrix instead of the actual Jacobian. The combination of these two networks has resulted in a time-efficient procedure for kinematic control of robot manipulators which avoids most of the complexity present in the classical-trigonometric-based methods. Also, by electronic implementation of the networks, kinematic solutions can be obtained in a very timely manner (few nanoseconds).  相似文献   

3.
In this paper, adaptive neural tracking control is proposed for a robotic manipulator with uncertainties in both manipulator dynamics and joint actuator dynamics. The manipulator joints are subject to inequality constraints, i.e., the joint angles are required to remain in some compact sets. Integral barrier Lyapunov functionals (iBLFs) are employed to address the joint space constraints directly without performing an additional mapping to the error space. Neural networks (NNs) are utilised to compensate for the unknown robot dynamics and external force. Adapting parameters are developed to estimate the unknown bounds on NN approximations. By the Lyapunov synthesis, the proposed control can guarantee the semi-global uniform ultimate boundedness of the closed-loop system, and the practical tracking of joint reference trajectory is achieved without the violation of predefined joint space constraints. Simulation results are given to validate the effectiveness of the proposed control scheme.  相似文献   

4.
Inverse kinematics is a fundamental problem in robotics. Past solutions for this problem have been realized through the use of various algebraic or algorithmic procedures. In this paper the use of feedforward neural networks to solve the inverse kinematics problem is examined for three different cases. A closed kinematic linkage is used for mapping input joint angles to output joint angles. A three-degree-of-freedom manipulator in 3D space is used to test mappings from both cartesian and spherical coordinates to manipulator joint coordinates. A majority of the results have average errors which fall below 1% of the robot workspace. The accuracy indicates that neural networks are an alternate method for performing the inverse kinematics estimation, thus introducing the fault-tolerant and high-speed advantages of neural networks to the inverse kinematics problem.This paper also shows the use of a new technique which reduces neural network mapping errors with the use of error compensation networks. The results of the work are put in perspective with a survey of current applications of neural networks in robotics.  相似文献   

5.
基于观测器的机械手神经网络自适应控制   总被引:3,自引:0,他引:3  
提出了一种基于观测器的机械手神经网络自适应轨迹跟随控制器设计方法,这里机 械手的动力学非线性假设是未知的,并且假设机械手仅有关节角位置测量.文中采用一个线 性观测器重构机械手的关节角速度,用神经网络逼近修正的机械手动力学非线性,改进系统 的跟随性能.基于观测器的神经网络自适应控制器能够保证机械手角跟随误差和观测误差的 一致终结有界性以及神经网络权值的有界性,最后给出了机械手神经网络自适应控制器-观 测器设计的主要理论结果,并通过数字仿真验证了所提方法的性能.  相似文献   

6.
In this paper, a dynamical time-delay neuro-fuzzy controller is proposed for the adaptive control of a flexible manipulator. It is assumed that the robotic manipulator has only joint angle position measurements. A linear observer is used to estimate the robot joint angle velocity. For a perfect tracking control of the robot, the output redefinition approach is used in the adaptive controller design using time-delay neuro-fuzzy networks. The time-delay neuro-fuzzy networks with the rule representation of the TSK type fuzzy system have better learning ability for complex dynamics as compared with existing neural networks. The novel control structure and learning algorithm are given, and a simulation for the trajectory tracking of a flexible manipulator illustrates the control performance of the proposed control approach.  相似文献   

7.
It is known that most of the key problems in visual servo control of robots are related to the performance analysis of the system considering measurement and modeling errors. In this paper, the development and performance evaluation of a novel intelligent visual servo controller for a robot manipulator using neural network Reinforcement Learning is presented. By implementing machine learning techniques into the vision based control scheme, the robot is enabled to improve its performance online and to adapt to the changing conditions in the environment. Two different temporal difference algorithms (Q-learning and SARSA) coupled with neural networks are developed and tested through different visual control scenarios. A database of representative learning samples is employed so as to speed up the convergence of the neural network and real-time learning of robot behavior. Moreover, the visual servoing task is divided into two steps in order to ensure the visibility of the features: in the first step centering behavior of the robot is conducted using neural network Reinforcement Learning controller, while the second step involves switching control between the traditional Image Based Visual Servoing and the neural network Reinforcement Learning for enabling approaching behavior of the manipulator. The correction in robot motion is achieved with the definition of the areas of interest for the image features independently in both control steps. Various simulations are developed in order to present the robustness of the developed system regarding calibration error, modeling error, and image noise. In addition, a comparison with the traditional Image Based Visual Servoing is presented. Real world experiments on a robot manipulator with the low cost vision system demonstrate the effectiveness of the proposed approach.  相似文献   

8.
In this paper, a dual neural network, LVI (linear variational inequalities)-based primal-dual neural network and simplified LVI-based primal-dual neural network are presented for online repetitive motion planning (RMP) of redundant robot manipulators (with a four-link planar manipulator as an example). To do this, a drift-free criterion is exploited in the form of a quadratic performance index. In addition, the repetitive-motion-planning scheme could incorporate the joint physical limits such as joint limits and joint velocity limits simultaneously. Such a scheme is finally reformulated as a quadratic program (QP). As QP real-time solvers, the aforementioned three kinds of neural networks all have piecewise-linear dynamics and could globally exponentially converge to the optimal solution of strictly-convex quadratic-programs. Furthermore, the neural-network based RMP scheme is simulated based on a four-link planar robot manipulator. Computer-simulation results substantiate the theoretical analysis and also show the effective remedy of the joint angle drift problem of robot manipulators.  相似文献   

9.
《Advanced Robotics》2013,27(3):153-168
Many studies have been performed on the position/force control of robot manipulators. Since the desired position and force required to realize certain tasks are usually designated in the operational space, the controller should adapt itself to an environment and generate the control force vector in the operational space. On the other hand, the friction of each joint of a robot manipulator is a serious problem since it impedes control accuracy. Therefore, the friction should be effectively compensated for in order to realize precise control of robot manipulators. Recently, soft computing techniques (fuzzy reasoning, neural networks and genetic algorithms) have been playing an important role in the control of robots. Applying the fuzzy-neuro approach (a combination of fuzzy reasoning and neural networks), learning/adaptation ability and human knowledge can be incorporated into a robot controller. In this paper, we propose a two-stage adaptive robot manipulator position/force control method in which the uncertain/unknown dynamic of the environment is compensated for in the task space and the joint friction is effectively compensated for in the joint space using soft computing techniques. The effectiveness of the proposed control method was evaluated by experiments.  相似文献   

10.
This paper introduces a robust adaptive control scheme for an underactuated free-flying space robot under non-holonomic constraints. An underactuated robot manipulator is defined as a robot that has fewer joint actuators than the number of total joints. Because, if one of the joints is out of order, it is so hard to repair the joint, especially in space, the control of such a robot manipulator is important. However, it is difficult to control an underactuated robot manipulator because of the reduced dimension of the input space, i.e. the non-holonomic structure of the underactuated system. The proposed scheme does not need to assume that the exact dynamic parameters must be known. It is analysed in joint space to control the underactuated robot mounted on the space station under parametric uncertainties and external disturbances. The simulation results have shown that the proposed method is very feasible and robust for a two-link planar free-flying space robot with one passive joint.  相似文献   

11.
《Advanced Robotics》2013,27(6):655-679
For the first time, a novel experimental hydraulic system that simulates joint flexibility of a single-rigid-link flexible-joint robot manipulator, with the ability of changing the joint flexibility's parameters, was designed and implemented in this study. Such a system could facilitate future control studies of robot manipulators by reducing investigation time and implementation cost of research. It could also be used to test the performance of different strategies to control the movement of flexible-joint manipulators. A hydraulic rotary servo motor was used to simulate the action of a flexible-joint robot manipulator, which was a challenging task, since the control of angular acceleration was required. In this study, a single-rigid-link elastic-joint robot manipulator was mathematically modeled and implemented in which joint flexibility parameters such as stiffness and damping could be easily changed. This simulation is referred to as a 'function generator' to drive a hydraulic robot manipulator. In this study the desired angular acceleration of the manipulator was used as the input to the hydraulic rotary motor and the objective was to make the hydraulic system follow the desired acceleration in the frequency range specified. A hydraulic actuator robot was built and tested. The results indicated that if the input signal had a frequency in the range of 5–15 Hz and damping ratio of 0.1 (typical values for flexible joints), the experimental setup was able to reproduce the input signal with acceptable accuracy. Owing to the inherent noise associated with the measurement of acceleration and some severe nonlinearities in the rotary motor, control of the experimental test system using classical methods was a challenging task that had not been anticipated.  相似文献   

12.
A neural network based identification approach of manipulator dynamics is presented. For a structured modelling, RBF-like static neural networks are used in order to represent and adapt all model parameters with their non-linear dependences on the joint positions. The neural architecture is hierarchically organised to reach optimal adjustment to structural apriori-knowledge about the identification problem. The model structure is substantially simplified by general system analysis independent of robot type. But also a lot of specific features of the utilised experimental robot are taken into account.A fixed, grid based neuron placement together with application of B-spline polynomial basis functions is utilised favourably for a very effective recursive implementation of the neural architecture. Thus, an online identification of a dynamic model is submitted for a complete 6 joint industrial robot.  相似文献   

13.
In this paper, a BP network is developed to approximate an error vector in the joint displacement of a 6 D.O.F. Stanford manipulator. This error results from several causes such as physical damage to the robot structure or inherited inaccuracies in the robot design. Results show that using neural networks is a robust and efficient solution.  相似文献   

14.
This article presents a theoretical and experimental study on structural dynamic response and determination of the joint characteristics of a five degree-of-freedom industrial robot manipulator with a parallel-drive mechanism. The joints were modeled as a linear spring in parallel with a viscous damper while the link members were assumed to be rigid in this study. The dynamic equations of motion of the robot manipulator were derived using the principle of virtual work. Based on these equations, the complex structural characteristics of the manipulator were simplified by carefully arranging the manipulator in proper arm configurations to avoid coupling effects among joints. Hence, the joint stiffness and damping ratio of each joint were determined experimentally. Meanwhile, the dynamic responses of the robot manipulator were also investigated. Good correlation between computer simulations and experimental results was achieved. From the experimental study, an additional troublesome flexural mode of about 10 Hz that tends to dominate the whole dynamic response and influence the positioning accuracy of the manipulator was found due to the weakness of the structural member at the base rotation joint, which was not modeled in the dynamic equations. The results of this study will be useful in providing a basis for improving the design of mechanical components and the articulating members of industrial robot manipulators.  相似文献   

15.
提出一种基于自适应神经模糊推理系统(ANFIS)求取机械手运动学逆解的方法。本文以SCARA(Selective Compliance Assembly Robot Arm)型四自由度机械手为研究对象,研究SCARA机械手末端执行器笛卡儿空间坐标与机械手关节空间关节变量之间的对应关系。首先根据笛卡儿运动轨迹选取起点、终点和中间点,并求得与之对应的关节变量值序列。然后利用插值方法求得关节空间的角度变化曲线,最后在关节曲线上随机选取样本点,进而利用得到的数据训练并验证自适应神经模糊推理系统求解逆解的正确性和精确性。与传统基于BP神经网络求取运动学逆解的方法进行仿真对比分析,结果表明ANFIS在运动学逆解的求取精度和运算时间上均优于BP神经网络。  相似文献   

16.
《Advanced Robotics》2013,27(1):17-43
This paper proposes a method for the identification of dynamics and control of a multi-link industrial robot manipulator using Runge-Kutta-Gill neural networks (RKGNNs). RKGNNs are used to identify an ordinary differential equation of the dynamics of the robot manipulator. A structured function neural network (NN) with sub-networks to represent the components of the dynamics is used in the RKGNNs. The sub-networks consist of shape adaptive radial basis function (RBF) NNs. An evolutionary algorithm is used to optimize the shape parameters and the weights of the RBFNNs. Due to the fact that the RKGNNs can accurately grasp the changing rates of the states, this method can effectively be used for long-term prediction of the states of the robot manipulator dynamics. Unlike in conventional methods, the proposed method can even be used without input torque information because a torque network is part of the functional network. This method can be proposed as an effective option for the dynamics identification of manipulators with high degrees-offreedom, as opposed to the derivation of dynamic equations and making additional hardware changes as in the case of statistical parameter identification such as linear least-squares method. Experiments were carried out using a seven-link industrial manipulator. The manipulator was controlled for a given trajectory, using adaptive fuzzy selection of nonlinear dynamic models identified previously. Promising experimental results are obtained to prove the ability of the proposed method in capturing nonlinear dynamics of a multi-link manipulator in an effective manner.  相似文献   

17.
为提升机器人机械臂关节的传动性能,使其处于良好的反步自适应工作环境,设计文献扫描机器人多关节机械臂滑膜控制系统。利用关键控制电路,实现机械臂全局PID滑膜控制器与机器人多关节滑膜控制器间的定向连接,完成新型控制系统的硬件运行环境搭建。通过机器人控制传感器标定操作,建立等效控制及动态滑膜方程,并利用上述计算结果界定机械臂滑膜的动态品质,实现新型控制系统的软件运行环境搭建,结合软、硬件运行单元,完成文献扫描机器人多关节机械臂滑膜控制系统设计。模拟文献扫描机器人多关节机械臂运行状态,设计对比实验结果表明,与传统系统相比应用新型滑膜控制系统后,机械臂关节的传动能力得到有效提升,反步自适应参数最大值可达到1.70  相似文献   

18.
In this paper, a recurrent neural network called the dual neural network is proposed for online redundancy resolution of kinematically redundant manipulators. Physical constraints such as joint limits and joint velocity limits, together with the drift-free criterion as a secondary task, are incorporated into the problem formulation of redundancy resolution. Compared to other recurrent neural networks, the dual neural network is piecewise linear and has much simpler architecture with only one layer of neurons. The dual neural network is shown to be globally (exponentially) convergent to optimal solutions. The dual neural network is simulated to control the PA10 robot manipulator with effectiveness demonstrated.  相似文献   

19.
欠驱动冗余度空间机器人优化控制   总被引:2,自引:2,他引:2       下载免费PDF全文
欠驱动控制是空间技术中容错技术的重要方面.本文研究了被动关节中有制动器的欠驱动冗余度空间机器人系统的运动优化控制问题.从系统动力学方程出发,分析了欠驱动冗余度空间机器人的优化能力和控制方法;给出了主、被动关节间的耦合度指标;提出了欠驱动冗余度空间机器人系统的“虚拟模型引导控制”方法,在这种方法中采用与欠驱动机器人机构等价的全驱动机器人作为模型来规划机器人的运动,使欠驱动系统在关节空间中逼近给出的规划轨迹,实现了机器人末端运动的连续轨迹运动优化控制;通过末关节为被动关节的平面三连杆机器人进行了仿真,仿真的结果证明了提出算法的有效性.  相似文献   

20.
The solution of inverse kinematics problem of redundant manipulators is a fundamental problem in robot control. The inverse kinematics problem in robotics is the determination of joint angles for a desired cartesian position of the end effector. For the solution of this problem, many traditional solutions such as geometric, iterative and algebraic are inadequate if the joint structure of the manipulator is more complex. Furthermore, many neural network approaches have been done to this problem. But the neural network-based solutions are not much reliable due to the error at the end of learning. Therefore, a reliability-based neural network inverse kinematics solution approach has been presented, and applied to a six-degrees of freedom (dof) robot manipulator in this paper. The structure of the proposed method is based on using three networks designed parallel to minimize the error of the whole system. Elman network, which has a profound impact on the learning capability and performance of the network, is chosen and designed according to the proposed solution method. At the end of parallel implementation, the results of each network are evaluated using direct kinematics equations to obtain the network with best result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号