首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Epidemiological evidence suggests that non-steroidal anti-inflammatory drugs (NSAID) may protect against Alzheimer's disease (AD). However, therapeutic studies with NSAIDs, including cyclooxygenase (COX) inhibitors and steroids have not supported such epidemiological evidence. The apparent inconsistency may be due to the fact that the epidemiological evidence is based on studies examining AD before clinical manifestations are apparent, while therapeutic studies have been carried out on people with illnesses severe enough to exceed the clinical detection threshold. Thus, it is conceivable that therapeutic strategies administered during early AD dementia or moderate dementia may not be optimally effective. Alternatively, the influence of inflammatory activity in the brain for cases at high risk to develop AD, e.g., mild cognitive impairment (MCI) cases, as a potential target of anti-inflammatory drugs in clinical studies maybe more suitable to be studied. The primary action of NSAIDs is inhibition of the COX enzymes. COX enzymes exist in an inducible form COX-2, that has been found to be elevated in the AD brain, and a constitutive form COX-1. Both COX-1 and COX-2 are known to be involved in numerous inflammatory activities as well as normal neuronal functions. In vitro, it has been demonstrated that non-selective inhibitors of COX can preferentially decrease the levels of the highly amyloidogenic amyloid-beta (Abeta)(1-42)peptide. Recent studies testing non-selective NSAIDs in murine models of AD neuropathology indicated that the frequency of Abeta plaque deposits in the brains of these animals can be significantly reduced by treatment with the non-selective COX inhibitor ibuprofen. These studies and epidemiological data strongly support a therapeutic potential for NSAIDs in the treatment of AD. Upon this premise, industry and academia are devoting a tremendous amount of resources to the testing of anti-inflammatory drugs for the treatment of AD. However, given the large number of candidate anti-inflammatory drugs and their widely divergent activities, it is essential to optimize drug selection and study design. A better understanding of the influence of inflammatory activity in AD, and identification of the specific mechanisms which play an early role in the disease's progression will greatly improve the likelihood of success in efforts to find an effective anti-inflammatory treatment strategy. We would like to discuss recent developments reinforcing anti-inflammatory drugs as therapeutic in the treatment of AD amyloidosis, and the relevance of understanding the role of COX and other inflammatory mediators in AD neuropathology and the clinical progression of AD dementia. These discussions may provide important criterion for the design of clinical trials of anti-inflammatory drugs in AD.  相似文献   

2.
The neuropathology of Alzheimer's disease (AD) is characterized by deposits of amyloid beta (Abeta) peptides and neurofibrillary tangles, but also, among other aspects, by signs of a chronic inflammatory process. Epidemiological studies have shown that long-term use of nonsteroidal antiinflammatory drugs (NSAIDs) reduces the risk of developing AD and delays its onset. The classic target of NSAIDs is the prevention of cyclooxygenase (COX) activation. The main mechanism of action of COXs is the synthesis of prostaglandins, some of which have potent inflammatory activity. The discovery of two isoforms of this enzyme, COX-1 and COX-2, and that the latter is inducible by inflammatory cytokines supported the hypothesis that its inhibition would result in a potent antiinflammatory effect and led to the rapid development of selective COX-2 inhibitors, collectively called coxibs. Based on this rationale, some coxibs have been used in clinical trials for AD patients, but all the results obtained so far have been negative. Here, we review our knowledge in terms of COX-2 in the central nervous system, COX-2 and Abeta formation, and finally COX-2 and AD pathogenesis to understand the reasons why these drugs have failed and whether there is any scientific support to keep them as therapeutic tools for this chronic disease.  相似文献   

3.
High serum cholesterol level has been shown as one of the risk factors for Alzheimer's disease (AD), and epidemiological studies indicate that treatment with cholesterol-lowering substances, statins, may provide protection against AD. An acute-phase reaction and inflammation, with increased levels of proinflammatory cytokines, are well known in the AD brain. Notably, there is evidence for antiinflammatory activities of statins, such as reduction in proinflammatory cytokines. Consequently, it is of interest to analyze the effects of statins on microglia, the main source of inflammatory factors in the brain, such as in AD. The aims of this study were to determine the effects of statins (atorvastatin and simvastatin) on microglial cells with regard to the secretion of the inflammatory cytokine interleukin-6 (IL-6) and cell viability after activation of the cells with bacterial lipopolysaccharides (LPS) or beta-amyloid1-40 (Abeta1-40) and in unstimulated cells. Cells of the human microglial cell line CHME-3 and primary cultures of rat neonatal cortical microglia were used. Incubation with LPS or Abeta1-40 induced secretion of IL-6, and Abeta1-40, but not LPS, reduced cell viability. Both atorvastatin and simvastatin reduced the basal secretion of IL-6 and the cell viability of the microglia, but only atorvastatin reduced LPS- and Abeta1-40-induced IL-6 secretion. Both statins potentiated the Abeta1-40-induced reduction in cell viability. The data indicate the importance of also considering the microglial responses to statins in evaluation of their effects in AD and other neurodegenerative disorders with an inflammatory component.  相似文献   

4.
OBJECTIVE: Insulin resistance (impaired insulin action) has been associated with Alzheimer disease (AD) and memory impairment, independent of AD. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists improve insulin sensitivity and regulate in-vitro processing of the amyloid precursor protein (APP). Authors evaluated the effects of the PPAR-gamma agonist rosiglitazone on cognition and plasma levels of the APP derivative beta-amyloid (Abeta) in humans. METHODS: In a placebo-controlled, double-blind, parallel-group pilot study, 30 subjects with mild AD or amnestic mild cognitive impairment were randomized to a 6-month course of rosiglitazone (4 mg daily; N = 20) or placebo (N = 10). Primary endpoints were cognitive performance and plasma Abeta levels. RESULTS: Relative to the placebo group, subjects receiving rosiglitazone exhibited better delayed recall (at Months 4 and 6) and selective attention (Month 6). At Month 6, plasma Abeta levels were unchanged from baseline for subjects receiving rosiglitazone but declined for subjects receiving placebo, consistent with recent reports that plasma Abeta42 decreases with progression of AD. CONCLUSIONS: Findings provide preliminary support that rosiglitazone may offer a novel strategy for the treatment of cognitive decline associated with AD. Future confirmation in a larger study is needed to fully demonstrate rosiglitazone's therapeutic potential.  相似文献   

5.
Deposition of amyloid beta peptides (Abeta) as amyloid deposits characterizes the brains of patients with Alzheimer's disease (AD). Mutations in presenilin genes linked to familial AD (FAD) have been shown to increase production of Abeta42, an initially and predominantly depositing Abeta species in all types of AD. PS has been shown to serve as the catalytic center for the gamma-secretase cleavage of a subset of single-pass membrane proteins including beta-amyloid precursor protein and Notch. gamma-Secretase inhibitors, including gamma42-selective inhibitors like NSAIDs, are emerging therapeutic agents for AD. Also, an establishment of a method to monitor the progression of AD using imaging and biochemical surrogate markers would be vital to the evaluation of the effects of disease-modifying drugs for AD. In this regard, a large-scale observation study, like the AD neuroimaging initiative (ADNI), should be conducted in Japan.  相似文献   

6.
Trying to decrease the production of Amyloid beta (Abeta) has been envisaged as a promising approach to prevent neurodegeneration in Alzheimer's disease (AD). A chronic inflammatory reaction with activated microglia cells and astrocytes is a constant feature of AD. The participation of the immune system in the disease process is further documented in several retrospective clinical studies showing an inverse relationship between the prevalence of AD and nonsteroidal anti-inflammatory drug (NSAID) therapy. Previously, we demonstrated that the combination of the proinflammatory cytokines TNFalpha with IFNgamma induces the production of Abeta-42 and Abeta-40 in human neuronal cells. In the present study, the neuronal cell line Sk-n-sh was incubated for 12 h with the cyclooxygenase inhibitor ibuprofen and subsequently stimulated with the cytokines TNFalpha and IFNgamma. Ibuprofen treatment decreased the secretion of total Abeta in the conditioned media of cytokine stimulated cells by 50% and prevented the accumulation of Abeta-42 and Abeta-40 in detergent soluble cell extracts. Viability of neuronal cells measured by detection of apoptosis was neither influenced by ibuprofen nor by cytokine treatment. The reduction in the production of Abeta by ibuprofen was presumably due to a decreased production of betaAPP, which in contrast to the control proteins M2 pyruvate kinase, beta-tubulin and the cytokine inducible ICAM-1 was detected at low concentration in ibuprofen treated cells. The data demonstrate a possible mechanism how ibuprofen may decrease the risk and delay the onset of AD.  相似文献   

7.
The presence of the alpha2macroglobulin receptor/low density lipoprotein receptor-related protein (alpha2Mr/LRP) and its ligands alpha2macroglobulin (alpha2M), apoliprotein E, and plasminogen activators was detected in senile plaques of Alzheimer's disease (AD). To explore a possible role of alpha2M in neurodegenerative processes occurring in AD, we analyzed the effect of alpha2M on Abeta 25-35-induced neurotoxicity. Treatment of LAN5 human neuroblastoma cells with 10 microM beta-amyloid peptide fragment 25-35 (Abeta 25-35) for 72 h resulted in a 50% decrease in cell viability as determined by MTT incorporation and cell counts. The addition of alpha2M to the culture medium of these cells did not determine any effect, but when the activated form alpha2M* was used a dose-dependent decrease in cell viability was observed, the maximum effect being reached at 140 and 280 nM. Moreover, treatment of LAN5 cells with alpha2M* in combination with Abeta 25-35 increased the neurotoxicity of the amyloid peptide by 25%. This neurotoxic effect of alpha2M* seems to be related to its capability to bind and inactivate TGFbeta in the culture medium, since it was mimicked by a TGFbeta neutralizing antibody. A possible involvement of receptor-mediated endocytosis was ruled out, since alpha2M receptor is not present on LAN5, as revealed by RT-PCR and Western blotting experiments. The presence of alpha2M* in amyloid deposits of Alzheimer's disease has been recently reported and a possible impairment of LRP internalization processes has been hypothesized. Our data suggest that the local accumulation of alpha2M* in AD plaques may increase Abeta 25-35-induced neurotoxicity by neutralizing TGFbeta-mediated neuroprotective mechanisms.  相似文献   

8.
Beta-amyloid peptide (Abeta) plays a central role in mediating neurotoxicity and in the formation of senile plaques in Alzheimer's disease (AD). The investigation of the roles of ubiquitin (Ub) in the process underlying the association of abnormal protein with the inclusion bodies that characterize AD is of great importance for the further understanding of this disorder. We have used primary cultures of cortical neurons and astrocytes to investigate the participation of the Ub-proteasome pathway in the degradation of Abeta and the effect of Abeta(1-42) and of the fragment Abeta(25-35) upon neural cells. We have found that Abeta(25-35) and Abeta(1-42) produce a significant increase in Ub-protein conjugates and in the expression of the Ub-activating enzyme E1. On the other hand, beta peptides inhibited the proteolytic activities of the 26S proteasome. When the proteolytic activity of the 26S proteasome was inhibited with lactacystin, there was a marked decrease in Abeta(1-42) degradation, suggesting that the peptide, in both astrocytes and neurons, could be a possible substrate of this enzymatic complex. Treatment of the cultures with lactacystin prior to the exposure to Abeta produced a significant decrease in cell viability, possibly as a consequence of the inhibition of Abeta degradation leading to a persistent exposure of the cells to the amyloidogenic peptide which results in cell death. Alterations in the Ub-proteasome pathway in AD could affect the normal proteolytic removal of Abeta, leading to an abnormal accumulation of Abeta(1-42).  相似文献   

9.
Cerebellar granule cells (CGCs) can express the inducible isoform of nitric oxide synthase (iNOS) in response to inflammatory stimuli. We demonstrate that induction of iNOS in CGCs by bacterial lipopolysaccharide and pro-inflammatory cytokines results in cell death that was potentiated by excess L-arginine and inhibited by the selective iNOS inhibitor, 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine. The NO-mediated cell death was accompanied by increased caspase-3-like activity, DNA fragmentation and positive terminal transferase dUTP nick end labeling (TUNEL), suggesting that apoptosis mediates CGC cell death. Incubation of CGCs with the non-steroidal anti-inflammatory drugs (NSAIDs), ibuprofen or indomethacin, or with 15-deoxy-delta12,14 prostaglandin J2 (PGJ2) downregulates iNOS expression and reduces subsequent cell death. Since in other cell types, both NSAIDs and PGJ2 can activate the peroxisome proliferator-activated receptor-gamma (PPARgamma) and downregulate cytokine levels and iNOS expression, and since CGCs express PPARgamma in vivo and in vitro, our data suggest that activation of CGC PPARgamma mediates iNOS suppression and reduced cell death. Because PPARgamma is expressed in brains of Alzheimer's Disease (AD) patients, in which neuronal iNOS expression and apoptotic cell death have been described, these results may help explain the basis for the beneficial effects of NSAIDs in AD.  相似文献   

10.
Huperzine A, a novel Lycopodium alkaloid originally discovered in the Chinese herb Qian Ceng Ta (Huperzia serrata), is a reversible, potent, and selective acetylcholinesterase (AChE) inhibitor and has been extensively used for the treatment of Alzheimer's disease (AD) in China. The present studies were designed to investigate effects of huperzine A on amyloid beta-peptide fragment 25-35 (Abeta25-35)-induced neuronal apoptosis and potential mechanisms in primary cultured rat cortical neurons. After exposure of the cells to Abeta25-35 (20 microM), apoptotic cell death was observed as evidenced by a significant decrease in cell viability, alteration of neuronal morphology, and DNA fragmentation. Pretreatment of the cells with huperzine A (0.01-10 microM) prior to Abeta25-35 exposure significantly elevated the cell survival and reduced Abeta25-35-induced nuclei fragmentation. Reactive oxygen species (ROS)-based fluorescence, caspase-3-like fluorogenic cleavage, and Western blot analysis demonstrated that huperzine A reduced Abeta25-35-induced ROS formation in a dose-dependent manner, and 1 microM of huperzine A attenuated Abeta25-35-induced caspase-3 activity at 6, 12, 24, and 48 hr posttreatment. Our results provide the first direct evidence that huperzine A protects neurons against Abeta25-35-induced apoptosis via the inhibition of ROS formation and caspase-3 activity.  相似文献   

11.
T Thomas  T G Nadackal  K Thomas 《Neuroreport》2001,12(15):3263-3267
The neurotoxic and proinflammatory actions of the Alzheimer peptide amyloid-beta (Abeta) are dependent on its aggregation and beta-sheet conformation. Chronic use of non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin for arthritis decreases the risk of developing Alzheimer's disease (AD) by unknown mechanisms. We report that these drugs inhibit human Abeta aggregation in vitro and reverse the beta-sheet conformation of preformed fibrils at clinically relevant doses. Aspirin prevented enhanced Abeta aggregation by aluminum, an environmental risk factor for AD. This anti-aggregatory effect was restricted to NSAIDs and was not exhibited by other drugs used in AD therapy. NSAIDS may have a role in the prevention and treatment of AD, in addition to a number of age-related disorders such as arthritis, cardiovascular disease and cancer.  相似文献   

12.
Vascular dysfunction and inflammatory processes may be early events in the pathology of Alzheimer's disease (AD). Even though amyloid beta-peptides (Abeta) play a prominent role in the initiation and progression of cellular dysfunction in AD, the precise in vivo actions of various Abeta-peptides has not been established. The cerebrovascular actions of the major Abeta-peptides (1-40) and (1-42) in live animals were investigated using an open cranial window technique. We show here that the Abeta-peptides cause vascular lesions, especially in the arterioles. In one set of experiments, leukocytes and platelets were tagged with Rhodamine 6G, soluble Abeta(1-40) infused intravenously for 2 minutes, and the vasculature video recorded for 90 minutes. In a second set of experiments, soluble Abeta(1-40) infusion was followed 30 minutes later by an infusion of soluble Abeta(1-42) and the vasculature recorded for 90 minutes. Fluorescent and transmission electron microscopic examinations demonstrated the following cerebrovascular action of Abeta-peptides: endothelial cell damage, leukocyte adhesion, platelet activation, thrombus formation, impeded blood flow, and smooth muscle cell damage. The vascular disruption observed were similar to those observed in the brains of some AD patients and may represent the initial phase of a vascular inflammatory response associated with cerebral amyloid angiopathy. The combination of Abeta(1-40) and (1-42) produced significantly more vascular disruption than Abeta(1-40) alone. Oral administration of conjugated estrogens in ovariectomized female rats protected them from the deleterious actions of Abeta-peptides. The reported protective effect of estrogen against AD may be mediated in part through prevention of cerebrovascular Abeta toxicity.  相似文献   

13.
Senile plaques in the Alzheimer's disease (AD) are formed by aggregation of beta-amyloid (Abeta) peptide. Abeta peptide has been shown to activate microglia and stimulate their production of inflammatory factors, such as cytokines. In the AD brain, the continued presence of amyloid plaques may keep microglia persistently activated, leading to chronic inflammation in the CNS. It is well established that alpha-melanocyte-stimulating hormone (alpha-MSH) gives rise to anti-inflammatory and anti-pyretic effects. The biological activities of alpha-MSH are mediated by one or more of the melanocortin receptor (MCR) subtypes, i.e. MCR1 - MCR5. The aim of the present study was to determine the effect of alpha-MSH alone and on Abeta-activated microglial cells with regard to the secretion of inflammatory cytokines, such as interleukin-6 (IL-6), and to determine which receptor subtype mediates the effects of alpha-MSH. The human microglial cell line, CHME3, was incubated for 24 h with freshly dissolved Abeta(1-40), interferon-gamma (IFN-gamma) and/or alpha-MSH. Freshly dissolved Abeta(1-40) (5-60 microM) resulted in a dose-dependent decrease in cell viability, along with a dose-dependent increase in IL-6 release. Neither IFN-gamma nor alpha-MSH affected the Abeta-induced secretion of IL-6, but resulted in a dose-dependent increase in basal IL-6 release. Agouti, the endogenous antagonist of MCR1 and 4, further increased the alpha-MSH-induced secretion of IL-6. RT-PCR showed the expression of MCR1, MCR3, MCR4 and MCR5 mRNA. The combined data suggest that the effect of alpha-MSH in increasing IL-6 release from the human microglial cell line is mediated by MCR3 or MCR5.  相似文献   

14.
beta-Amyloid (Abeta) plaques are characteristic hallmarks of Alzheimer's disease (AD). In AD, it has been suggested that activation of microglial cells might be the link between Abeta deposition and neuronal degeneration. Activated microglia are associated with senile plaques and produce free radicals and inflammatory cytokines. However, it is still not clear whether Abeta needs a prestimulated environment to exert its proinflammatory potential. Advanced glycation endproducts (AGEs), protein-bound oxidation products of sugars, have been shown to accumulate in senile plaques and could induce a silent but chronic inflammation in the AD brain. We tested whether Abeta acts as an amplifier of a submaximal proinflammatory response initiated by exposure to chicken egg albumin-AGE, lipopolysaccharide or interferon-gamma. Synthetic Abeta was used to produce three different samples (Abeta-fibrilar; Abeta-aggregated; Abeta-AGE), which were characterized for beta-sheeted fibrils by the thioflavin-T test and electron microscopy. As markers of microglial activation, nitric oxide, interleukin-6, macrophage-colony stimulation factor and tumour necrosis factor-alpha production was measured. All three Abeta samples alone could not induce a detectable microglial response. The combination of Abeta preparations, however, with the coinducers provoked a strong microglial response, whereby Abeta-AGE and fibrilar Abeta were more potent inflammatory signals than aggregated Abeta. Thus, Abeta in senile plaques can amplify microglial activation by a coexisting submaximal inflammatory stimulus. Hence, anti-inflammatory therapeutics could either target the primary proinflammatory signal (e.g. by limiting AGE-formation by AGE inhibitors or cross-link breakers) or the amplifyer Abeta (e.g. by limiting Abeta production by beta- or gamma-secretase inhibitors).  相似文献   

15.
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.  相似文献   

16.
The amyloid cascade hypothesis is widely accepted as the centerpiece of Alzheimer disease (AD) pathogenesis. It proposes that abnormal production of beta amyloid protein (Abeta) is the cause of AD and that the neurotoxicity is due to Abeta itself or its oligomeric forms. We suggest that this, in itself, cannot be the cause of AD because demonstrating such toxicity requires micromolar concentrations of these Abeta forms, while their levels in brain are a million times lower in the picomolar range. AD probably results from the inflammatory response induced by extracellular Abeta deposits, which later become enhanced by aggregates of tau. The inflammatory response, which is driven by activated microglia, increases over time as the disease progresses. Disease-modifying therapeutic attempts to date have failed and may continue to do so as long as the central role of inflammation is not taken into account. Multiple epidemiological and animal model studies show that NSAIDs, the most widely used antiinflammatory agents, have a substantial sparing effect on AD. These studies provide a proof of concept regarding the anti-inflammatory approach to disease modification. Biomarker studies have indicated that early intervention may be necessary. They have established that disease onset occurs more than a decade before it becomes clinically evident. By combining biomarker and pathological data, it is possible to define six phases of disease development, each separated by about 5 years. Phase one can be identified by decreases in Abeta in the CSF, phase 2 by increases of tau in the CSF plus clear evidence of Abeta brain deposits by PET scanning, phase 3 by slight decreases in brain metabolic rate by PET-FDG scanning, phase 4 by slight decreases in brain volume by MRI scanning plus minimal cognitive impairment, phase 5 by increased scanning abnormalities plus clinical diagnosis of AD, and phase 6 by advanced AD requiring institutional care. Utilization of antiinflammatory agents early in the disease process remains an overlooked therapeutic opportunity. Such agents, while not preventative, have the advantage of being able to inhibit the consequences of both Abeta and tau aggregation. Since there is more than a decade between disease onset and cognitive decline, a window of opportunity exists to introduce truly effective disease-modifying regimens. Taking advantage of this opportunity is the challenge for the future.  相似文献   

17.
During the last 25 years, neuropathological, biochemical, genetic, cell biological and even therapeutic studies in humans have all supported the hypothesis that the gradual cerebral accumulation of soluble and insoluble assemblies of the amyloid beta-protein (Abeta) in limbic and association cortices triggers a cascade of biochemical and cellular alterations that produce the clinical phenotype of Alzheimer's disease (AD). The reasons for elevated cortical Abeta42 levels in most patients with typical, late-onset AD are unknown, but based on recent work, these could turn out to include augmented neuronal release of Abeta during some kinds of synaptic activity. Elevated levels of soluble Abeta42 monomers enable formation of soluble oligomers that can diffuse into synaptic clefts. We have identified certain APP-expressing cultured cell lines that form low-n oligomers intracellularly and release a portion of them into the medium. We find that these naturally secreted soluble oligomers--at picomolar concentrations--can disrupt hippocampal LTP in slices and in vivo and can also impair the memory of a complex learned behavior in rats. Abeta trimers appear to be more potent in disrupting LTP than are dimers. The cell-derived oligomers also decrease dendritic spine density in organotypic hippocampal slice cultures, and this decrease can be prevented by administration of Abeta antibodies or small-molecule modulators of Abeta aggregation. This therapeutic progress has been accompanied by advances in imaging the Abeta deposits non-invasively in humans. A new diagnostic-therapeutic paradigm to successfully address AD and its harbinger, mild cognitive impairment-amnestic type, is emerging.  相似文献   

18.
One pathogenic characteristic of Alzheimer's disease (AD) is the formation of extracellular senile plaques with accumulated microglia. According to the amyloid hypothesis, the increase or accumulation of amyloid-beta (Abeta) peptides in the brain parenchyma is the primary event that influences AD pathology. Although the role of microglia in AD pathology has not been clarified, their involvement in Abeta clearance has been noted. High mobility group box protein-1 (HMGB1) is an abundant nonhistone chromosomal protein. We reported recently that HMGB1 was associated with senile plaques and the total protein level significantly increased in AD brain. In this study, diffuse HMGB1 immunoreactivity was observed around dying neurons in the kainic acid- and Abeta1-42 (Abeta42)-injected rat hippocampi. HMGB1 also colocalized with Abeta in the Abeta42-injected rats but not in transgenic mice, which show massive Abeta production without neuronal loss in their brains. Furthermore, coinjection of HMGB1 delayed the clearance of Abeta42 and accelerated neurodegeneration in Abeta42-injected rats. These results suggest that HMGB1 released from dying neurons may inhibit microglial Abeta42 clearance and enhance the neurotoxicity of Abeta42. HMGB1 may thus be another target in the investigation of a therapeutic strategy for AD.  相似文献   

19.
The amyloid-beta (Abeta) peptides and specifically the highly amyloidogenic isoform Abeta42 appear to be key agents in the pathogenesis of familial and sporadic forms of Alzheimer's disease (AD). The final step in the generation of Abeta from the amyloid precursor protein is catalyzed by the multiprotein complex gamma-secretase, which constitutes a prime drug target for prevention and therapy of the disease. However, highly potent gamma-secretase inhibitors that block formation of all Abeta peptides have provoked troubling side effects in preclinical animal models of AD. This toxicity can be readily explained by the promiscuous substrate specificity of gamma-secretase and its essential role in the NOTCH signaling pathway. For that reason and because of the crucial role of Abeta42 in the pathogenesis of the disease, selective inhibition of Abeta42 production would seem to be a more promising alternative to complete inhibition of gamma-secretase activity. This theoretical concept has edged much closer to clinical reality with the surprising finding that certain nonsteroidal anti-inflammatory drugs (NSAIDs), including ibuprofen, and derived compounds display preferential Abeta42-lowering activity. In contrast to gamma-secretase inhibitors, these gamma-secretase modulators effectively suppress Abeta42 production while sparing processing of NOTCH and other gamma-secretase substrates. Although not fully resolved on the molecular level, the mechanism of action of Abeta42-lowering NSAIDs is independent of cyclooxygenase inhibition and most likely involves direct interaction with components of the gamma-secretase complex or its substrates. Current efforts to improve the pharmacological shortcomings of available gamma-secretase modulators will hopefully lead to the development of clinically useful Abeta42-lowering compounds in the near future.  相似文献   

20.
Protein oxidation mediated by amyloid beta-peptide (1-42) (Abeta[1-42]) has been proposed to play a central role in the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder associated with aging and the loss of cognitive function. The specific mechanism by which Abeta(1-42), the primary component of the senile plaque and a pathologic hallmark of AD, contributes to the oxidative damage evident in AD brain is unknown. Moreover, the specific proteins that are vulnerable to oxidative damage induced by Abeta(1-42) are unknown. Identification of such proteins could contribute to our understanding of not only the role of Abeta(1-42) in the pathogenesis of AD, but also provide insight into the mechanisms of neurodegeneration at the protein level in AD. We report the proteomic identification of two proteins found to be oxidized significantly in neuronal cultures treated with Abeta(1-42): 14-3-3zeta and glyceraldehyde-3-phosphate dehydrogenase. We also report that pretreatment of neuronal cultures with gamma-glutamylcysteine ethyl ester, a compound that supplies the limiting substrate for the synthesis of glutathione and results in the upregulation of glutathione in neuronal cultures, protects both proteins against Abeta(1-42)-mediated protein oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号