首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Factor IX Niigata is a mutant factor IX responsible for the moderately severe hemophilia B in a patient who has a normal level of factor IX antigen with reduced clotting activity (1-4% of normal). We reported previously that the purified mutant protein could be converted to the factor IXa beta form by factor XIa/Ca2+ at a rate similar to that in the case of normal factor IX, but the resulting mutant factor IXa beta could not activate factor X in the presence of factor VIII, Ca2+, and phospholipids (Yoshioka, A. et al. (1986) Thromb. Res. 42, 595-604). In the present study, we analyzed factor IX Niigata at the structural level to elucidate the molecular abnormality responsible for the loss of clotting activity. Amino acid sequence analysis of a peptide obtained on lysyl endopeptidase digestion, coupled with subsequent SP-V8 digestion, demonstrated that the alanine at position 390 was substituted by valine in the catalytic domain of the factor IX Niigata molecule.  相似文献   

2.
Human factor IX is activated to factor IXa beta when factor XIa cleaves two peptide bonds, Arg 145-Ala 146 and Arg 180-Val 181, to release an activation peptide. In factor IX Chapel Hill (IXCH), isolated from a hemophilia B patient with a mild bleeding disorder, the arginine 145 residue has been replaced with a histidine. Thus factor IXCH is activated by factor XIa by cleaving only at the Arg 180-Val 181 bond, leaving the activation peptide attached, and resulting in an activated species, factor IXa alpha CH, that, like normal factor IXa alpha, is only 20% as active as factor IXa beta. It is reported that both factor IX and factor IXCH could be activated by trypsin to forms of factor IXa beta and factor IXa beta CH that had clotting activities identical to factor XIa-activated factor IX. Amino-terminal amino acid sequence analysis showed that trypsin cleaved factor IX at the same bonds as did factor XIa; factor IXCH was cleaved at the Arg 180-Val 181 bond, as normal, and was cleaved near the histidine 145, at the Lys 142-Leu 143 bond, releasing a slightly larger activation peptide than from normal factor IXa beta. Metal ions had no effect on the rate of activation of factor IX by trypsin; however, metal ions had a profound effect on the rate at which further incubation with trypsin inactivated factor IXa. Calcium and manganese protected factor IXa from inactivation by trypsin more effectively than magnesium, which was more effective than no metal ion. It is concluded that trypsin can activate normal factor IX and factor IXCH to fully active IXa beta forms.  相似文献   

3.
To investigate the function of the gamma-carboxyglutamic acid (Gla) residues of factor IXa in the activation of factor X, a new species of bovine factor IXa, designated "factor IXa beta'," and its corresponding Gla-domainless form, designated "Gla-domainless factor IXa beta'," were prepared under controlled conditions and characterized. First, bovine factor IXa alpha was converted by alpha-chymotrypsin in the presence of calcium ions to factor IXa beta' (Mr 47,000). Compared with factor IXa beta, factor IXa beta' had essentially identical activities towards a synthetic substrate, benzoyl-L-arginine ethylester (BAEE), towards an active site titrant, p-nitrophenyl-p'-guanidinobenzoate, and towards protein substrate, namely, factor X. Next, the Gla-rich region (residues 1-41) of the light chain was removed from factor IXa beta' by additional selective cleavage by alpha-chymotrypsin in the absence of calcium ions. Gla-domainless factor IXa beta' was purified to homogeneity on a column of DEAE-Sepharose CL-6B. The heavy chain was not altered by either chymotryptic digestion. Functional comparisons of the three activated forms, namely, factor IXa alpha, factor IXa beta', and Gla-domainless factor IXa beta', with factor IXa beta revealed that all four activated forms of factor IX had one active-site residue per molecule and essentially identical specific esterase activity towards BAEE. However, the clotting activity of Gla-domainless factor IXa beta' was less than 0.5% of that of factor IXa beta'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The binding of factor IX to cultured bovine endothelial cells was characterized using isolated domains of bovine factor IX. An NH2-terminal fragment that consists of the gamma-carboxyglutamic acid (Gla) region linked to the two epidermal growth factor (EGF)-like domains bound to the endothelial cells with the same affinity as intact factor IX, indicating that the serine protease part of factor IX is not involved in binding. This fragment also inhibited the factor IXa beta'-induced clotting of plasma at a concentration that would suggest a competition for phospholipid binding sites. However, after proteolytic removal of the Gla region from the fragment, the two EGF-like domains inhibited clotting almost as effectively, suggesting a direct interaction between this part of the molecule and the cofactor, factor VIIIa. Using affinity-purified Fab fragments against the Gla region, the EGF-like domains, and the serine protease part, it was observed that the serine protease part of the molecule undergoes a large conformational change upon activation, whereas the Gla region and the EGF-like domains appear to be unaffected. All three classes of Fab fragments were equally efficient as inhibitors of the factor IXa beta'-induced clotting reaction. Part of factor Va and factor VIIIa have significant sequence homology to a lectin. We therefore investigated the effect on in vitro clotting of the recently identified unique disaccharide Xyl alpha 1-3Glc, that is O-linked to a serine residue in the NH2-terminal EGF-like domain of human factor IX (Hase, S., Nishimura, H., Kawabata, S.-I., Iwanaga, S., and Ikenaka, T. (1990) J. Biol. Chem. 265, 1858-1861). However, no effect on blood clotting was observed in the assay system used. Our results are compatible with a model in which the serine protease part provides the specificity of the binding of factor IXa to factor VIIIa-phospholipid, but that the EGF-like domain(s) also contributes to the interaction of the enzyme with its cofactor.  相似文献   

5.
Using affinity chromatography on a column of factor X-Cellulofine, we have isolated a novel blood coagulation factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (Habu snake). This anticoagulant protein was also purified by chromatography on Sephadex G-75 and S-Sepharose Fast Flow. The yield of the purified protein was approximately 16 mg from 400 mg of crude venom. The purified protein gave a single band on both analytical alkaline disc-gel electrophoresis and SDS-PAGE. This protein had a relative molecular weight (Mr) after SDS-PAGE of 27,000 before reduction of disulfide bonds and 14,000 after reduction of disulfide bonds. The protein prolonged the clotting time induced by kaolin or factor Xa. In the presence of Ca2+, it formed a complex with factor X, the molar ratio being 1 to 1. Similar complex formation was observed with factor Xa and factor IX/factor IXa, but not with other vitamin K-dependent coagulation factors, i.e., prothrombin, factor VII, protein C, protein S, and protein Z. The interaction of this anticoagulant protein with factor IX/factor X was dependent on gamma-carboxyglutamic acid (Gla) domains, since Gla-domainless derivatives of factor X and factor IXa beta' did not interact with this anticoagulant protein.  相似文献   

6.
A derivative of human blood clotting factor IXa beta lacking gamma-carboxyglutamic acid (Gla) residues was prepared by limited proteolysis with chymotrypsin, and subsequently examined for its ability to bind calcium ions. By amino acid analysis, Gla-domainless human factor IXa beta contained 0.3-0.4 moles of beta-hydroxyaspartic acid per mole of protein. Equilibrium dialysis experiments demonstrated that Gla-domainless human factor IXa beta retained two high-affinity calcium binding sites (Kd=52 microM), a finding essentially identical to that observed for Gla-domainless bovine factor IX that contains 0.8-0.9 moles of beta-hydroxyaspartic acid per mole of protein. These data strongly suggest that the beta-hydroxyaspartic acid residue in these proteins does not participate in their high affinity calcium sites.  相似文献   

7.
A murine monoclonal antibody (IgG1k, Kd approximately 10(-8) M) specific for an epitope located on the heavy chain of human factor IXa was used to study structure-function relationships of factor IX. The antibody inhibited factor IX clotting activity but did not impair activation of factor IX either by factor XIa/calcium or by factor VIIa/tissue factor/calcium. The antibody also did not impair the binding of factor IXa to antithrombin III. Moreover, the antibody did not prevent calcium and phospholipid (PL) from inhibiting the binding of factor IXa to antithrombin III. The antibody also failed to impair activation of factor VII by factor IXa/calcium/PL. Furthermore, the antibody did not interfere with the very slow activation of factor X by factor IXa/calcium/PL. In contrast, the antibody did interfere with factor X activation when reaction mixtures also contained factor VIII:Ca/von Willebrand factor. The marked acceleration of factor X activation observed in control mixtures was not observed in mixtures containing the antibody. Similar results were obtained in reaction mixtures containing the Fab portion of the antibody and factor VIII:Ca free of von Willebrand factor. In additional experiments, factor VIII:Ca/von Willebrand factor was found to inhibit the binding of the antibody to 125I-factor IXa as determined using an immunosorbent assay. Moreover, the antibody displaced factor VIII:Ca from the factor X activator complex (IXa/calcium/PL/VIII:Ca) as evidenced by an altered elution pattern on gel filtration chromatography. From these observations, we conclude that the antibody impairs the clotting activity of factor IXa through interference with its binding of factor VIII:Ca. This suggests a significant role for the heavy chain (residues of 181-415) of factor IXa in binding factor VIII:Ca.  相似文献   

8.
Coagulation factor IX contains a gamma-carboxyglutamic acid (Gla) module, two epidermal growth factor-like (EGF) modules, and a serine protease region. We have characterized a mouse monoclonal antibody that binds the N-terminal EGF-like module of human factor IX with high affinity. Studies of recombinant factor IX mutants indicated that the epitope is located in the C-terminal end of the EGF-like module, which is consistent with the binding being non-Ca(2+)-dependent. The antibody bound factor IXa (K(D) = 7.6 x 10(-10) M) with about 10-fold higher affinity than factor IX (K(D) = 6.2 x 10(-9) M). Binding of the antibody to factor IXa did not affect the amidolytic activity of the protein, nor was binding affected by active site inhibition of factor IXa. These results are consistent with long-range interactions between the serine protease region and the N-terminal EGF-like module in factor IX.  相似文献   

9.
Hemophilia Bm is characterized by a strikingly prolonged plasma ox brain prothrombin time. In an attempt to find an explanation for this phenomenon we have analyzed various aspects of the Bm variants factor IX Deventer, factor IX Milano, factor IX Novara, and factor IX Bergamo. Proteolytic cleavage by factor XIa was normal in two Bm variants, but absent at the Arg180-Val bond in the other two. In the latter variants Arg180 was replaced by either Trp or Gln, whereas Val181----Phe and Pro368----Thr replacements have occurred in the variants that were normally cleaved by factor XIa. In all four variants the Bm effect could be neutralized with a single monoclonal antibody against factor IX. Also, after treatment with factor XIa, none of the Bm variants reacted with antithrombin III (in contrast to normal factor IXa). Purified factor IX Deventer (one of the variants with a replacement of Arg181), either with or without pretreatment with factor XIa, was found to be a more effective competitive inhibitor of the factor VIIa-tissue factor-induced factor X activation than similarly treated normal factor IX. In addition, this inhibitory effect was much more pronounced when bovine tissue factor was used instead of human tissue factor. We propose that the normal activation of factor IX not only produces a conformational change around the active site serine that allows efficient substrate binding and catalysis, but that the same conformational change is instrumental in effectively dissociating factor IXa from the activating factor VIIa-tissue factor complex. Amino acid replacements that disrupt this conformational transition directly (e.g. Pro368----Thr near the catalytic center) or indirectly (mutations at the Arg180-Val activation site) therefore lead to a combination of 1) the loss of coagulant activity and 2) an inhibitory effect in the ox brain prothrombin time assay.  相似文献   

10.
When blood coagulation factor IX is converted to activated factor IX (factor IXa), it develops enzymatic activity and exposes the binding sites for both activated factor VIII and the endocytic receptor low density lipoprotein receptor-related protein (LRP). In the present study we investigated the interaction between factor IXa and LRP in more detail, using an affinity-purified soluble form of LRP (sLRP). Purified sLRP and full-length LRP displayed similar binding to factor IXa. An anti-factor IX monoclonal antibody CLB-FIX 13 inhibited factor IXa.sLRP complex formation. Both the antibody and a soluble recombinant fragment of LRP (i.e. cluster IV) interfered with factor IXa amidolytic activity, suggesting that the antibody and LRP share similar binding regions near the active site of factor IXa. Next, a panel of recombinant factor IXa variants with amino acid replacements in the surface loops bordering the active site was tested for binding to antibody CLB-FIX 13 and sLRP in a solid phase binding assay. Factor IXa variants with mutations in the region Phe(342)-Asn(346), located between the active site of factor IXa and factor VIII binding helix, showed reduced binding to both antibody CLB-FIX 13 and sLRP. Surface plasmon resonance analysis revealed that the variant with Asn(346) replaced by Asp displayed slower association to sLRP, whereas the variant with residues Phe(342)-Tyr(345) replaced by the corresponding residues of thrombin showed faster dissociation. Recombinant soluble LRP fragment cluster IV inhibited factor IXa-mediated activation of factor X with IC(50) values of 5 and 40 nm in the presence and absence of factor VIII, respectively. This inhibition thus seems to occur via two mechanisms: by interference with factor IXa.factor VIIIa complex assembly and by direct inhibition of factor IXa enzymatic activity. Accordingly, we propose that LRP may function as a regulator of blood coagulation.  相似文献   

11.
Sheehan JP  Phan TM 《Biochemistry》2001,40(16):4980-4989
Phosphorothioate oligonucleotides (PS ODNs) prolong the activated partial thromboplastin time in human plasma by inhibition of intrinsic tenase (factor IXa-factor VIIIa) activity. This inhibition was characterized using ISIS 2302, a 20-mer antisense PS ODN. ISIS 2302 demonstrated hyperbolic, mixed-type inhibition of factor X activation by the intrinsic tenase complex. The decrease in V(max(app)) was analyzed by examining complex assembly, cofactor stability, and protease catalysis. ISIS 2302 did not inhibit factor X activation by the factor IXa-phospholipid complex, or significantly affect factor VIII-phospholipid affinity. Inhibitory concentrations of ISIS 2302 modestly decreased the affinity of factor IXa-factor VIIIa binding in the presence of phospholipid (K(D) = 11.5 vs 4.8 nM). This effect was insufficient to explain the reduction in V(max(app)). ISIS 2302 did not affect the in vitro half-life of factor VIIIa, suggesting it did not destabilize cofactor activity. In the presence of 30% ethylene glycol, the level of factor X activation by the factor IXa-phospholipid complex increased 3-fold, and the level of chromogenic substrate cleavage by factor IXa increased more than 50-fold. ISIS 2302 demonstrated partial inhibition of factor X activation by the factor IXa-phospholipid complex, and chromogenic substrate cleavage by factor IXa, only in the presence of ethylene glycol. Like the intact enzyme complex, ISIS 2302 demonstrated hyperbolic, mixed-type inhibition of chromogenic substrate cleavage by factor IXa (K(I) = 88 nM). Equilibrium binding studies with fluorescein-labeled ISIS 2302 demonstrated a similar affinity (K(D) = 92 nM) for the PS ODN-factor IX interaction. These results suggest that PS ODNs bind to an exosite on factor IXa, modulating catalytic activity of the intrinsic tenase complex.  相似文献   

12.
Studies of the mechanisms of blood coagulation zymogen activation demonstrate that exosites (sites on the activating complex distinct from the protease active site) play key roles in macromolecular substrate recognition. We investigated the importance of exosite interactions in recognition of factor IX by the protease factor XIa. Factor XIa cleavage of the tripeptide substrate S2366 was inhibited by the active site inhibitors p-aminobenzamidine (Ki 28 +/- 2 microM) and aprotinin (Ki 1.13 +/- 0.07 microM) in a classical competitive manner, indicating that substrate and inhibitor binding to the active site was mutually exclusive. In contrast, inhibition of factor XIa cleavage of S2366 by factor IX (Ki 224 +/- 32 nM) was characterized by hyperbolic mixed-type inhibition, indicating that factor IX binds to free and S2366-bound factor XIa at exosites. Consistent with this premise, inhibition of factor XIa activation of factor IX by aprotinin (Ki 0.89 +/- 0.52 microM) was non-competitive, whereas inhibition by active site-inhibited factor IXa beta was competitive (Ki 0.33 +/- 0.05 microM). S2366 cleavage by isolated factor XIa catalytic domain was competitively inhibited by p-aminobenzamidine (Ki 38 +/- 14 microM) but was not inhibited by factor IX, consistent with loss of factor IX-binding exosites on the non-catalytic factor XI heavy chain. The results support a model in which factor IX binds initially to exosites on the factor XIa heavy chain, followed by interaction at the active site with subsequent bond cleavage, and support a growing body of evidence that exosite interactions are critical determinants of substrate affinity and specificity in blood coagulation reactions.  相似文献   

13.
Hsu YC  Hamaguchi N  Chang YJ  Lin SW 《Biochemistry》2001,40(37):11261-11269
In this paper, we report functional characterization of positions 192 and 217 (chymotrypsinogen numbering system) in human factor IX and discuss the distinction and similarity of these two sites among the blood coagulation factors. Recombinant factor IXQ192E (residue glutamine at position 192 replaced by glutamic acid), IXQ192K, IXE217D, and IXE217R proteins exhibited 11%, 46%, 39%, and 2% of the wild-type factor IX's clotting activity, respectively. Binding of these variants to factor VIIIa (FVIIIa) was inefficient compared to that of wild-type factor IX, and the dissociation constants doubled for IXQ192E, 3-fold higher for IXQ192K and 4-fold higher for both IXE217D and IXE217R. In the presence of FVIIIa, all variant factor IX hydrolyzed factor X at the catalytic efficiencies correlating with respective clotting activities. However, FVIIIa greatly enhanced the catalytic efficiency of both IXE217 variants to a greater extent (approximately 7 x 10(4)-fold) as compared to its effect on the wild-type factor IXa and the other two IXQ192 variants [by a factor of (1-2) x 10(4)]. Moreover, while both IXQ192 variants demonstrated small substrate selectivity similar to that of wild-type factor IXa, the selectivity of both IXE217 variants was greatly altered. Mutations at position 192 disturbed the interaction of factor IXa with physiological inhibitors. Although all variants formed an SDS-stable complex with antithrombin III (ATIII) equally well in the presence of heparin and were readily inhibited by ATIII in the absence of heparin, activated IXQ192K exhibited a slower stable complex formation with ATIII without heparin. On the other hand, only IXQ192E showed decreased interaction with TFPI. Our results demonstrate that positions 192 and 217 play different roles unique to factor IX in specifying the interaction of factor IX with substrates and inhibitors.  相似文献   

14.
Activated human factor IX (factor IXa) was treated under mildly acidic conditions with a mixture of formaldehyde and morpholine. This reagent has been shown to react preferentially with gamma-carboxyglutamyl (Gla) residues and to convert these residues to gamma-methyleneglutamyl residues (Wright, S.F., Bourne, C.D., Hoke, R.A., Koehler, K.A., and Hiskey, R.G. (1984) Anal. Biochem. 139, 82-90). The modified enzyme was evaluated for coagulant activity and calcium-dependent fluorescence quenching. [14C]Formaldehyde was employed to allow quantitation of the modification and to facilitate localization of the modified residues in the primary structure of factor IXa. In the presence of the [14C]formaldehyde/morpholine reagent, factor IXa rapidly lost coagulant activity, which corresponded to incorporation of radiolabel. Examination of the relationship between protein modification (radiolabel incorporation) and the loss of coagulant activity suggested that modification of 1 mol of Gla/mol of factor IXa results in complete loss of factor IXa coagulant activity. Primary structure analysis of the radioactivity labeled factor IXa suggested that modification of any one of 11 Gla residues was responsible for the loss of coagulant activity. In the presence of calcium, modified factor IXa exhibited a smaller Gla-dependent decrease in protein fluorescence than native factor IXa, but the Gla-independent fluorescence change was the same for both proteins. It therefore appears that the Gla domain of factor IXa must be completely intact for the enzyme to undergo a functionally important calcium-dependent conformational change necessary for coagulant activity.  相似文献   

15.
Factor IX is a vitamin K-dependent zymogen of a serine protease. The NH2-terminal half of the molecule consists of a Ca(2+)-binding gamma-carboxyglutamic acid (Gla)-containing module and two modules homologous to the epidermal growth factor (EGF) precursor. To elucidate the role of these non-catalytic modules of factor IXa beta in factor X activation, we have isolated and characterized fragments of bovine factor IX, containing one or both of the EGF-like modules as well as these modules linked to the Gla module. The fragments were used as inhibitors of factor IXa beta-mediated factor X activation in a plasma clotting system and in systems with purified components of the Xase complex. Fragments consisting of either the two EGF-like modules of factor IX linked together or the NH2-terminal EGF-like module alone were found to inhibit factor Xa generation both in the presence and absence of the cofactor, factor VIIIa. Moreover, a fragment consisting of the corresponding modules of factor X had a similar effect. We therefore propose that factor IXa beta and factor X interact directly through their EGF-like modules on or in the vicinity of a phospholipid surface. We have also found that the isolated Gla module of factor IX inhibits the formation of factor Xa both in the presence and absence of phospholipid but not in the absence of factor VIIIa. Our results are compatible with a model of the Xase complex, in which both the serine protease part and the Gla module of factor IXa beta interact with factor VIIIa.  相似文献   

16.
Endothelium provides a specific binding site for Factor IX/IXa which can propagate activation of coagulation by promoting Factor IXa-VIII-mediated activation of Factor X. In this report the endothelial cell Factor IX/IXa binding site has been identified and the coagulant function of the receptor blocked. Studies using [3H]Factor IX derivatized with the photoaffinity labeling agent N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH) and cultured bovine endothelial cells demonstrated cross-linking to a trypsin-sensitive cell surface protein of Mr approximately equal to 140,000. Immunoprecipitation of metabolically labeled endothelium with Factor IX derivatized with the cleavable cross-linking agent N-succinimidyl(4-azidophenyl)-1,3'-dithiopropionate and antibody to Factor IX demonstrated the endothelial cell origin of the Mr 140,000 cell surface protein. Blockade of the Factor IX/IXa binding protein by covalently linking SANPAH-5-dimethylaminonaphthalene-1-sulfonyl-Glu-Gly-Arg-Factor IXa or SANPAH-Factor IX prevented both specific Factor IXa binding and effective Factor IXa-VIII-mediated activation of Factor X on endothelium. Following extraction of endothelium with detergents, Factor IX/IXa binding activity was solubilized and could be assayed using a polyvinyl chloride plate binding assay. Western blots of cell extracts demonstrated binding of 125I-Factor IX at Mr approximately equal to 140,000 which was blocked by excess Factor IX, but not antisera to Factor VIII, von Willebrand factor, alpha 2-macroglobulin, or epidermal growth factor receptor. These data indicate that endothelium provides a distinct binding site for Factor IX/IXa consisting, at least in part, of a membrane protein which can modulate the coagulant activity of Factor IXa on the cell surface.  相似文献   

17.
Factor IX Amagasaki (AMG) is a naturally occurring mutant of factor IX having essentially no coagulant activity, even though normal levels of antigen are detected in plasma. Factor IX AMG was purified from the patient's plasma by immunoaffinity chromatography with an anti-factor IX monoclonal antibody column. Factor IX AMG was cleaved normally by factor VIIa-tissue factor complex, yielding a two-chain factor IXa. Amino acid composition and sequence analysis of one of the tryptic peptides isolated from factor IX AMG revealed that Gly-311 had been replaced by Glu. We identified a one-base substitution of guanine to adenine in exon VIII by amplifying exon VIII using the polymerase chain reaction method and sequencing the product. This base mutation also supported the replacement of Gly-311 by Glu. In the purified system, factor IXa AMG did not activate factor X in the presence of factor VIII, phospholipids, and Ca2+, and no esterase activity toward Z-Arg-p-nitrobenzyl ester was observed. The model building of the serine protease domain of factor IXa suggests that the Gly-311----Glu exchange would disrupt the specific conformational state in the active site environment, resulting in the substrate binding site not forming properly. This is the first report to show the experimental evidence for importance of a highly conserved Gly-142 (chymotrypsinogen numbering) located in the catalytic site of mammalian serine proteases so far known.  相似文献   

18.
beta-Hydroxyaspartic acid is a post-translationally modified amino acid found in a number of plasma proteins in a domain homologous to epidermal growth factor. Its presence can be correlated with a high affinity Ca2+ binding site, with a dissociation constant of 10-100 microM. We describe a system for the expression of human coagulation factor IX in dog kidney cells in tissue culture, in which the post-translational modifications and the biochemical activity are indistinguishable from factor IX synthesized in vivo. This system has been used to express eight different point mutations of human factor IX in the first epidermal growth factor domain in order to study the role of beta-hydroxyaspartate at residue 64, and the adjacent carboxylate residues at positions 47, 49 and 78. We conclude that this domain is essential for factor IX function and suggest that Ca2+ binds to carboxylate ions in this domain and stabilizes a conformation necessary for the interaction of factor IXa with factor X, factor VIII and phospholipid in the next step of the clotting cascade.  相似文献   

19.
During blood coagulation factor IXa binds to factor VIIIa on phospholipid membranes to form an enzymatic complex, the tenase complex. To test whether there is a protein-protein contact site between the gamma-carboxyglutamic acid (Gla) domain of factor IXa and factor VIIIa, we demonstrated that an antibody to the Gla domain of factor IXa inhibited factor VIIIa-dependent factor IXa activity, suggesting an interaction of the factor IXa Gla domain with factor VIIIa. To study this interaction, we synthesized three analogs of the factor IXa Gla domain (FIX1-47) with Phe-9, Phe-25, or Val-46 replaced, respectively, with benzoylphenylalanine (BPA), a photoactivatable cross-linking reagent. These factor IX Gla domain analogs maintain native tertiary structure, as demonstrated by calcium-induced fluorescence quenching and phospholipid binding studies. In the absence of phospholipid membranes, FIX1-47 was able to inhibit factor IXa activity. This inhibition is dependent on the presence of factor VIIIa, suggesting a contact site between the factor IXa Gla domain and factor VIIIa. To demonstrate a direct interaction we did cross-linking experiments with FIX1-479BPA, FIX1-4725BPA, and FIX1-4746BPA. Covalent cross-linking to factor VIIIa was observed primarily with FIX1-4725BPA and to a much lesser degree with FIX1-4746BPA. Immunoprecipitation experiments with an antibody to the C2 domain of factor VIIIa indicate that the factor IX Gla domain cross-links to the A3-C1-C2 domain of factor VIIIa. These results suggest that the factor IXa Gla domain contacts factor VIIIa in the tenase complex through a contact site that includes phenylalanine 25 and perhaps valine 46.  相似文献   

20.
F Lian  L He  N S Colwell  P Lollar  D M Tollefsen 《Biochemistry》2001,40(29):8508-8513
A monoclonal IgG isolated from a patient with multiple myeloma has been shown to bind to exosite II of thrombin, prolong both the thrombin time and the activated partial thromboplastin time (aPTT) when added to normal plasma, and alter the kinetics of hydrolysis of synthetic peptide substrates. Although the IgG does not affect cleavage of fibrinogen by thrombin, it increases the rate of inhibition of thrombin by purified antithrombin approximately 3-fold. Experiments with plasma immunodepleted of antithrombin or heparin cofactor II confirm that prolongation of the thrombin time requires antithrombin. By contrast, prolongation of the aPTT requires neither antithrombin nor heparin cofactor II. The IgG delays clotting of plasma initiated by purified factor IXa but has much less of an effect on clotting initiated by factor Xa. In a purified system, the IgG decreases the rate of activation of factor VIII by thrombin. These studies indicate that binding of a monoclonal IgG to exosite II prolongs the thrombin time indirectly by accelerating the thrombin-antithrombin reaction and may prolong the aPTT by interfering with activation of factor VIII, thereby diminishing the catalytic activity of the factor IXa/VIIIa complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号