首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 359 毫秒
1.
硅纳米线杂化太阳能电池由于具有光吸收范围广、载流子分离和收集能力相对较高、纳米结构可以有效增强光吸收、对无机材料的质量要求不高从而降低电池的成本等优点,成为太阳能电池的研究热点之一。该文回顾了硅纳米线杂化太阳能电池的技术起源,介绍了器件基本结构和工作原理,分析了由硅纳米线阵列和PEDOT:PSS制成的杂化太阳能电池的制备方法,并着重分析了硅纳米线的制备方法,最后探讨了杂化太阳能电池研究实践中面临的问题及目前主要的研究方向。  相似文献   

2.
基于第一性原理的密度泛函理论计算,研究了ZnS/ZnO核壳结构纳米线和ZnS纳米线的电子结构和光学性质.结果表明,两者都属于直接带隙半导体.同时,相对于ZnS纳米线,ZnO/ZnS核壳结构纳米线的最小禁带宽度变窄,其带隙变窄的主要原因可能是由于ZnS/ZnO核壳结构纳米线中O原子的2p态电子在价带顶参与杂化引起的.此外,通过对光学性质的分析发现ZnS/ZnO核壳结构纳米线的吸收波长出现红移,与ZnS/ZnO核壳结构纳米线最小禁带宽度变窄的现象相一致.  相似文献   

3.
金属纳米线阵列因其优异的催化和传感特性等性能而受到广泛关注.非晶合金纳米模压技术提供了一种廉价便捷的近净成型技术,并可用于制备金属纳米线阵列,但目前对该技术的研究还不够深入.由于金属纳米线阵列的结构和形貌对其性能具有强烈的影响,本文对非晶合金在纳米模压过程中纳米线阵列的结构和形貌演化过程进行了系统的研究.研究发现,纳米线阵列中纳米线的长度随着模压温度、时间和压力的增加而增加,而纳米线长度的增加会促使纳米线阵列的形貌逐渐由分散型转变为聚集型.增加模压温度和时间能促进非晶合金纳米线晶化的发生,而增加模压压力则有助于抑制晶化的发生.通过模压参数的调节可以实现对纳米模压后纳米线阵列结构与形貌的调控,进而实现纳米线阵列性能的调控.  相似文献   

4.
无机-有机杂化介孔材料组装与性能表征   总被引:1,自引:0,他引:1  
利用表面活化剂诱导合成法和离子印迹技术,通过TEOS和AAPS酸性催化水解和缩聚反应,将氨基嫁接到介孔材料孔壁上,组装出一种新颖的有序的无机-有机杂化材料;通过IR,xRD,TG,DTA,MIP和粒度分析测定,表征了该杂化材料的组成和孔结构。杂化材料对稀土La^3+离子吸附量测定结果表明:杂化材料可对稀土离子有效捕集,La^3+印迹杂化材料对模板镧离子比非印迹杂化材料表现出更好的识别选择性。  相似文献   

5.
纳米结构氧化锡是一种具有较高比表面积、催化活性、光电性能等优异特性的半导体材料。氧化锡纳米线作为纳米结构氧化锡的一种,其典型制备方法包括模板法、液相法、气相法和热氧化法等。综述了氧化锡纳米线典型制备方法的基本原理和工艺特点及其优缺点,并且提出了目前氧化锡纳米线制备工艺中存在的问题。  相似文献   

6.
本文采用第一性原理密度泛函理论系统地研究了Fe原子单掺杂和双掺杂ZnO纳米线的电子性质和磁性质.所有掺杂纳米线的形成能都比纯纳米线的形成能低,说明掺杂过程是放热的.计算结果显示Fe原子趋于占据纳米线表面位置.纳米线的总磁矩主要来源于Fe原子3d轨道的贡献.由于杂化,相邻的O原子也产生了少量自旋.在超原胞内,Fe、O原子磁矩平行排列,表明它们之间是铁磁耦合.表面掺杂纳米线显示出半导体特性,而中间掺杂纳米线显示出半金属性,在自旋电子学领域有广泛应用.  相似文献   

7.
研究制备氯丙基功能化的有机一硅胶杂化整体柱,考察不同组成对整体柱聚合结构、渗透性、稳定性和柱效的影响,分析整体柱电渗流变化趋势和电色谱分离性能.所制备的氯丙基杂化硅胶整体柱结构稳定、固定相分布均匀,分离性能良好,包括反相色谱保留、静电荷吸附和电泳等多种模式的协同作用.应用加压电色谱模式。7种烷基苯、8种苯胺类化合物和7种苯甲酸类物质在氯丙基杂化硅胶整体柱中实现基线分离.  相似文献   

8.
运用第一性原理方法研究了C掺杂ZnS纳米线的电子性质和磁性质.研究发现C原子趋于替代纳米线表面的S原子.所有掺杂纳米线显示了半导体特性.纳米线的总磁矩主要来源于C原子2p轨道的贡献.由于杂化,相邻的Zn原子和S原子也产生了少量自旋.在超原胞内,C、Zn和S原子磁矩平行排列,表明它们之间是铁磁耦合.铁磁态和反铁磁态的能量差达到了121meV,表明C掺杂ZnS纳米线可能存在室温铁磁性,这在自旋电子学领域有很大应用前景.  相似文献   

9.
采用化学气相沉积法,通过金属镓和氨气的直接反应,在石英衬底上沉积出GaN纳米线。利用 XRD和SEM对制备的 GaN 纳米线进行了结构和形貌的表征。结果表明合成的GaN纳米线为六方纤锌矿结构,直径为100~200 nm,长度达几微米,GaN纳米线的生长符合VLS生长模型。室温PL光谱表明GaN纳米线在395 nm和566 nm的发光峰主要与Ga空位或者N空位引起的缺陷能级相关。  相似文献   

10.
应用分子动力学方法,采用嵌入势EAM与Buckingham势,对金属Cu、半导体化合物CuInSe2和陶瓷化合物MgO纳米线进行拉伸模拟,考察其拉伸应力-应变曲线,并分析拉伸过程中的结构变化.发现当以高于临界应变率的速率对纳米线进行拉伸时,纳米线由脆性断裂向韧性断裂转变,且其延伸率可以超过100%,表现出超塑性的特性,而以较低应变率拉伸时,纳米线仍然表现为脆性断裂,这表明纳米线材料的超塑性对于应变率高度敏感.通过观察纳米线在拉伸过程中的结构变化,发现高应变率拉伸时由于CuInSe2与Cu纳米线晶体结构发生非晶化,在这一转变过程中大量能量被吸收,因而导致其塑性变好.而MgO纳米线则发生面心立方结构向环形结构的相变,相变的发生同样导致了能量的吸收,从而使其塑性大大改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号