首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对污水处理厂二级生化出水硝酸盐氮浓度高的问题,选用高效硫自养反硝化菌,构建以生物陶粒为填料的自养反硝化滤池,模拟生活污水二级生化出水,调节运行参数,考察脱氮效果。结果表明,滤池经过10 d 200 mg/L NO_3~--N培养液的间歇培养和15 d 100 mg/L NO_3~--N连续进水驯化后挂膜成功,NO_3~--N去除率稳定在90%以上;在HRT为12 h下,滤池对进水NO_3~--N质量浓度为30 mg/L去除效果最好,NO_3~--N和TN去除率分别达到96%、93%,出水NO_2~--N含量1 mg/L以下,但硫酸盐浓度为500~600 mg/L;进水NO_3~--N质量浓度30 mg/L,HRT为2~12 h时,滤池对NO_3~--N去除率均可达85%以上,HRT2 h脱氮性能下降,最佳HRT为2 h;滤池反硝化脱氮率沿填料厚度的增加而逐渐增加,HRT为12 h时在填料高度5 cm处即可达到70%的NO_3~--N去除率。  相似文献   

2.
针对高含氮水体往往存在碳源不足,需要补充碳源的问题,以农林废弃物油菜秸秆作为外加碳源,对不同高含氮的水体进行了生物反硝化脱氮实验研究。结果表明,油菜秸秆在NO_3~--N含量相对较低的水体情况下脱氮效果较好,可以作为良好的缓释碳源,当NO_3~--N的质量浓度为20 mg/L时,脱氮效果最好,NO_3~--N负荷为31 mg/(L·d);当NO_3~--N的质量浓度大于30 mg/L时,因秸秆释碳不足,NO_3~--N去除率减小。不同浓度NO_3~--N水体的NO_3~--N去除率差别较大,但脱氮负荷较为接近,说明高含量NO_3~--N水体的脱氮效果主要与秸秆释碳量有关,受碳源影响。  相似文献   

3.
近年来随着我国合成革产业的飞速发展,合成革废水量也不断增多,利用传统生物脱氮工艺处理存在占地面积大、运行成本较高、总氮去除不彻底等问题,亟需探求经济高效的合成革废水脱氮新技术。本研究采用短程硝化(PNP)联合厌氧氨氧化/反硝化(Anammox/DN)处理实际合成革废水。实验结果表明,联合工艺处理效果较稳定,进水COD为160~580 mg/L,NH_4~+-N质量浓度为260~460 mg/L,出水NH_4~+-N质量浓度约15 mg/L、NO_2~--N质量浓度小于10 mg/L,NO_3~--N约30 mg/L,出水COD小于40 mg/L,总氮去除率稳定在85%左右,总氮容积去除速率约0.41~0.60 kg N/(m~3·d),达到预期处理效果。  相似文献   

4.
为进一步提高反硝化(DN)池的反硝化效能,分别考察了进水温度、HRT、C/N以及反洗周期等因素对前置反硝化曝气生物滤池(BAF)组合工艺DN池的脱氮效能的影响。结果表明,反硝化效能会随温度的升高而升高,在25℃时NO_3~--N去除率为91.3%;水力停留时间对反硝化作用的影响主要原于HRT的减少缩短了反硝化作用的反应时间,从而使反硝化过程中所消耗的COD降低;COD/ρ(NO_3~--N)小于15时,COD/ρ(NO_3~--N)是DN池脱氮效能的决定性因素,当COD/ρ(NO_3~--N)大于15时,NO_3~--N的含量变化趋于平缓;同一反洗周期内DN池的反硝化效能会持续增加,下一反洗周期开始前NO_3~--N的质量浓度降低至1.9 mg/L,此时脱氮效能达到最大。  相似文献   

5.
陈洁 《广东化工》2016,(11):190-193
为探究砾石床湿地系统对氮去除的影响,设计茭草床和芦苇床湿地系统以研究对氮去除的影响因素。结果表明HRT增加至2 d,TN和NO_3--N的去除率增加,而NH_4+~-N的去除率无变化。保持HRT为1 d,温度由22℃降低至10.6℃时,NO_3~--N的去除率明显下降,而NH_4~+-N的去除率变化不大。投加50 mg/L的葡萄糖补充碳源,湿地床沿程NO_3~--N逐渐降低、DO浓度降低1 mg/L,碱度的沿程变化幅度比未加碳源提高数倍。反硝化作用不仅需在碳源充足时进行,而且外加有机碳源可以显著强化反硝化过程。水力负荷为0.2~0.8 m~3/(m~2·d)时,茭草床TN负荷增加,出水浓度增加,进水浓度和出水浓度满足简单回归方程。分析TN去除途径,砾石床因吸附能力较好而具有较大的TN去除率,而茭白床和芦苇床湿地系统脱氮的最主要路径是微生物的反硝化作用,最高脱氮比例可达49%,其次是砾石吸附作用,而植物吸收脱氮作用最弱。  相似文献   

6.
以自制复合铁碳填料为载体,建立物化-生物耦合脱氮体系,考察了HRT、DO含量、进水pH对低C/N(COD/ρ(TN)=1.5:1)污水脱氮的影响,并通定量了物化作用对脱氮的贡献率。结果表明,在耦合体系中,NH_4~+-N通过氨氧化菌和硝化菌的作用生成NO_3~--N和NO_2~--N,NO_3~--N和NO_2~--N进入生物膜内部,自养反硝化菌以载体原电池反应所产生的[Fe~(2+)]、[H]为电子供体实现反硝化脱氮,其适宜运行条件为:HRT为4.0 h,DO的质量浓度(2.0±0.1)mg/L,进水pH为7.0±0.1,此时污水COD、NH_4~+-N、NO_3~--N、TN去除率分别可达94.6%~97.3%、82.1%~83.6%、92.1%~94.7%、89.3%~92.5%。适宜的HRT低于其它同步硝化反硝化脱氮过程。反应器内反硝化所需电子37.9%由载体物化反应供给,消除了传统生物脱氮过程对有机碳源的依赖,源缩短了脱氮所需停留时间。故该耦合体系可实现低C/N污水的高效深度脱氮。  相似文献   

7.
将不同粒径荔枝核、聚乙烯醇(PVA)和海藻酸钠复合获得多孔固体碳源,对复合碳源的微观形貌、孔隙结构进行表征,并在人工配制的工厂化循环养殖废水中考察了其作为反硝化碳源的释碳速率及脱氮效果。结果表明,扫描电镜显示粒径250μm复合碳源的外表面致密,孔隙较少,而含粒径150μm和粒径75μm荔枝核的复合碳源外表面孔隙较多,内部孔隙发达。脱氮过程中,粒径75μm复合碳源的硝酸盐去除率在第3天可达到100%,无亚硝酸盐积累。粒径150μm复合碳源NO_3~--N去除率逐渐上升至94.71%,NO_2~--N质量浓度则逐渐降低至0.74 mg/L。粒径250μm复合碳源脱氮效果较差,NO_3~--N去除率为30%。粒径75μm和粒径150μm复合碳源孔隙发达,碳源释碳能力强,短时间内硝酸盐去除率高,可作为海水养殖废水反硝化脱氮的固体碳源填料。  相似文献   

8.
在SBR反应器中以乙酸钠为碳源、NO_3~--N为电子受体成功富集了反硝化聚糖菌,并采用批次实验进一步考察了进水C/N比(3.3,6.7,10)、电子受体(NO_3~--N、NO_2~--N)、碳源类型(乙酸钠、葡萄糖)对反硝化聚糖菌活性的影响及内碳源转化特性。实验结果表明,进水C/N比越高,系统NO_x~--N去除率越高,厌氧段合成PHB越多,但进水C/N比过高会导致普通反硝化菌占优势,影响内碳源反硝化效率,进水C/N比为6.7较为合适;以NO_3~--N为电子受体长期培养的DGAOs系统未经NO_2~--N驯化,对NO_2~--N同样具有良好的反硝化性能,在投加与NO_3~--N相同浓度的NO_2~--N后,系统NO_x~--N去除率达89.6%;当以葡萄糖为碳源时,DPAOs在厌氧段合成的PHB的量仅为以乙酸钠为碳源时合成PHB量的79.5%,且厌氧段葡萄糖利用率仅为72.8%,远远小于乙酸钠的利用率。  相似文献   

9.
为探讨A/O/A和BAF+A工艺结合优势微生物对印染废水脱氮处理的效果,试验以广东某纺织有限公司废水站为例,采用优势微生物结合升级的系统对该废水进行脱氮处理的小试研究。实验结果表明,在接种优势微生物后,ρ(NH3-N)从19.5mg/L降至3.17mg/L,ρ(TN)从35.66mg/L降至8.93mg/L,去除率分别达到83.7%和75.0%。硝化作用良好的BAF池出水进入反硝化池,并用水解酸化池出水提供碳源,有效去除总氮,ρ(TN)从10.9mg/L降至6.2mg/L,ρ(TN)去除效率达到43.1%。系统出水ρ(COD)≤60.0mg/L,ρ(氨氮)≤5.0mg/L,ρ(总氮)≤15.0mg/L。  相似文献   

10.
针对高负荷地下渗滤系统TN去除率低的问题,研究将渗滤出水回流与原污水混合,进入前置反硝化单元。结果表明,当回流体积比分别为0.5:1、1:1和2:1时,系统对NH_4~+-N的去除率高于92%,且出水NH_4~+-N的质量浓度低于0.5 mg/L;前置反硝化单元对NO_3~--N去除率分别为91.0%、83.0%和64.2%,而系统对TN去除率仅为18.6%、31.2%和30.8%。在回流体积比为2:1时,将原污水COD/ρ(TN)调为6,以与常规生活污水C/N相同,此时反硝化单元的NO_3~--N去除率升至95.2%,而系统TN去除率升至57.1%,且出水TN的质量浓度低于15 mg/L。因此,如果采用该组合工艺处理常规生活污水(COD/ρ(TN)大于6),可使其最终出水TN和NH_4~+-N含量达到更严格的排放标准。  相似文献   

11.
分别采用稻壳、玉米芯和陈米作为外加碳源,研究不同碳源对低碳氮比污水反硝化的影响。结果表明:稻壳和玉米芯对NH3-N的去除效果显著,去除率分别为0~93.33%和6.9%~91.75%;投加陈米后,出水NH3-N比原水有所增加。投加稻壳和玉米蕊时,反应体系对TN的去除效果不稳定,去除率为-28.36%~42.79%和-14.93%~58%;而投加陈米后,对TN的去除效果显著,出水TN范围为0.69~10.8 mg/L,去除率为33.43%~93.37%。从反硝化效率和成本方面看,陈米更适于作为反硝化脱氮的碳源。  相似文献   

12.
针对污水处理厂深度脱氮受制于进水碳氮比偏低的问题,以玉米芯和聚己内酯(PCL)为原料制备有机缓释碳源处理二级出水,比较了包埋微生物(二沉池菌悬液)与非包埋情况下的脱氮表现。结果表明,当进水硝态氮为5 mg/L(低浓度),10 mg/L(中浓度)和20 mg/L(高浓度)时,包埋菌悬液是强化脱氮效率的有效手段。当处理进水硝态氮低于10 mg/L时,包埋菌悬液缓释碳源的脱氮效果均较好,硝态氮去除率达97.34%以上。当进水硝态氮大于20 mg/L时,释碳量高的碳源仍能稳定脱氮,同时因较高的碳源利用效率,包埋碳源具有最佳总氮去除,去除率为88.80%。制备包埋活性污泥菌悬液的固态缓释碳源时,采用十二烷基硫酸钠(K12)发泡增加碳源的比表面积,可强化脱氮微生物的附着增殖,与活性污泥微生物相比,长期运行中出现了的反硝化功能菌属Methyloversatilis,丰度为16.06%。  相似文献   

13.
王磊 《山东化工》2023,(14):264-267
针对北方某污水处理厂冬季出水氮磷去除效果不佳的问题,通过外加混合型碳源和除磷剂提高脱氮除磷效果。本研究对不同配比的混合型碳源反硝化速率进行了研究,并研究了水厂投加混合碳源和化学除磷剂后对氮磷的去除效果。通过反硝化小试实验和分析水厂进出水氮磷变化,得出结论:C与N物质的量比7时,以1∶5.5物质的量比混合的葡萄糖和乙酸钠为外加碳源,对活性污泥反硝化能力提升效果最好;在水厂污水中以C与N物质的量比10投加混合型碳源强化生物脱氮,TN去除率提高了25.67%。投加35 mg·L-1的聚合FeCl3和20 mg·L-1的聚合AlCl3辅助除磷,TP去除率提高了10%。出水氮磷达到一级A标准。结论是混合型碳源和化学除磷剂可以有效地帮助冬季低温污水脱氮除磷,在实际应用中具有良好的经济效益。  相似文献   

14.
水解反硝化工艺强化脱氮处理   总被引:2,自引:0,他引:2       下载免费PDF全文
碳源对脱氮除磷都具有重要的作用,碳源不足会导致脱氮效果降低,出水TN水质不达标。为解决碳源不足造成的脱氮能力差的问题,本试验采用水解反硝化脱氮工艺,将水解酸化与反硝化脱氮过程相结合,取代缺氧反硝化,有效地解决了碳源不足所导致的脱氮效果差的问题。利用水解反硝化脱氮工艺处理城市污水,出水NH4+-N、TN和COD都满足一级A标准,去除率分别为98.0%、69.4%和82.7%,比同期污水处理厂AAO工艺的TN去除率高出17.5%。在BOD5/TN为3~5的条件下,水解池中污泥的比反硝化速率为缺氧池污泥的1.2~1.7倍,并且去除相同的N所需要的碳源较少,在碳氮比为3:1、3.5:1、4:1和5:1时去除单位N水解池可分别节省59.5%、52.2%、19.9%和23.1%的COD,有效地解决了脱氮过程中碳源不足问题。  相似文献   

15.
通过中试实验研究了三级组合生物滤池强化脱氮效果,考察了第二级好氧滤柱回流比对工艺前置反硝化的影响,第三级滤池外加碳氮比对后置反硝化强化脱氮效果的影响。结果表明,在进水流量为0.5 m~3/h,水温为18℃左右,第二级好氧滤柱气水比为3:1时,在回流比为100%时,前置反硝化脱氮能达最佳效果,TN去除率为54.07%,出水TN浓度平均值为19.94 mg/L,不同回流比下,COD、NH_4~+-N均有较高去除率。为进行强化脱氮,在第三级缺氧滤柱前投加碳源,碳氮比为7:1时,第三级对TN去除率为40.7%,出水TN平均值为11.84 mg/L。三级组合生物滤池结合前置和后置反硝化工艺对TN有很好的去除效果,稳定运行后,系统对TN平均去除率达到72.96%。  相似文献   

16.
为了考察硫磺/石灰石自养反硝化系统的脱氮性能,并探究系统N_2O的产生和排放规律,采用均匀填充的上流式硫磺/石灰石生物滤池反应器,研究了2组HRT下,不同进水NO_3~--N浓度对系统脱氮效果的影响及N_2O的排放规律。结果表明,进水NO_3~--N浓度为(54.46±1.15)mg/L、HRT为2.5 h时,反应器容积负荷最大且对NO_3~--N去除率最高,可达99.93%,系统无NO_2~--N累积,出水N_2O低于0.86 mg/L;另外,研究发现NO_3~--N浓度随反应器高度增加而逐渐降低,N_2O浓度随着反应器下部NO_2~--N的富集逐渐增加,并随上部NO_2~--N的还原而逐渐减小;进水NO_3~--N浓度增大,N_2O累积量峰值点沿反应器高度逐渐上移,因此该系统仅能处理较低浓度NO_3~--N废水。  相似文献   

17.
采用聚乙烯醇(PVA)、海藻酸钠、谷壳、反硝化细菌等利用包埋固定化技术制备成3种不同成分的固定化反硝化细菌联合固体碳源的小球,分别在不同的条件下研究外加碳源和固定化反硝化菌对脱氮效果的影响。结果表明,在有外加碳源时,固体碳源小球能提高污水中的C/N,在相同的条件下,投加和未加含有固体碳源的小球对NO_3~--N的去除率分别达到95.22%和57.89%;在小球中固定化微生物时,其去除性能更好,在相同的条件下,固定和未固定微生物的小球对NO_3~--N的去除率分别为95.22%和87.11%。2种情形下的优化温度和p H分别为30℃和7.5。  相似文献   

18.
从厌氧污泥中分离出一株氢自养反硝化细菌S1,通过模拟地下水环境,考察了硝酸盐浓度、碳源投加量、pH、温度、SO_4~(2-)浓度对该菌株脱氮性能的影响。结果表明,菌株S1为陶厄氏菌属,反硝化过程中最适碳源投加量为0.5 g/L。当NO_3~--N质量浓度100 mg/L,pH=6或SO42-质量浓度90 mg/L时,菌株对NO_3~--N的去除均受到抑制。pH在7~10范围内,随着pH升高,菌株反硝化速率增大;温度在10~30℃范围内,温度越高,菌株反硝化速率越快。  相似文献   

19.
利用剩余污泥水解酸化液作为外加碳源研究中部曝气和底部曝气曝气生物滤池(BAF)处理低碳氮比生活污水时的生物脱氮性能。结果表明,碳源与污水投配的流量比以及是否回流对BAF生物脱氮效果影响明显,气水流量比和回流流量比对BAF生物脱氮效果有一定影响;进水NH4+-N、TN质量浓度和COD分别为43.11、45.07、29.2mg.L-1时,中部曝气BAF的NH4+-N和TN去除率分别为99.04%和78.32%,出水COD为32.4 mg.L-1;底部曝气BAF的NH4+-N和TN去除率分别为98.61%和68.99%,出水COD为28.4 mg.L-1。研究表明,BAF在2种运行方式下可获得良好的硝化与反硝化性能,且不会引起二次污染。  相似文献   

20.
分别采用零价铁、反硝化污泥及零价铁+反硝化污泥的系统处理含NO_3~--N的废水,探讨零价铁的添加对反硝化系统脱氮效果的影响及系统中发生的主要反应。结果表明,零价铁系统对废水中的NO_3~--N无去除效果;当零价铁+反硝化污泥系统对废水中NO_3~--N的去除率达到100%时,反硝化污泥系统对废水中的NO_3~--N去除率仅为60.1%。零价铁+反硝化污泥系统中主要发生零价铁参与的氧化还原反应及微生物参与的生物反硝化反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号