首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
介绍了喷墨打印、墨水直写打印、熔融沉积成型、立体光刻和数字光处理等多种增材制造技术(即3D打印技术)在含能材料中的应用,指出将该技术应用于含能材料的制造,可以轻易制得具有复杂设计结构的含能材料。但这些技术目前多数仍处于实验室制备阶段,未来的发展方向主要是进行3D打印技术的实际应用。  相似文献   

2.
3.
岳敏  李红伟  李海燕 《橡胶工业》2019,66(10):0795-0798
以弹性体为打印材料的3D打印技术为熔融沉积快速成型、立体光固化、选择性激光烧结和聚合物喷射。简介热塑性弹性体打印材料和热固性弹性体打印材料,概述3D打印技术在弹性体制品生产中的应用,综述3D打印技术在弹性体领域的发展和挑战。光硫化或光固化是橡胶领域3D打印技术的发展趋势。  相似文献   

4.
高性能膜材料是膜分离技术的“芯片”,发展新型高效制备方法是膜分离领域的重要研究方向。以数字模型为基础的3D打印技术,在复杂结构器件精密构筑方面展现出了优异的灵活性。近年来,3D打印技术在高性能膜材料开发方面的应用被广泛关注。本文从制备方法、性能强化等方面介绍了3D打印多孔陶瓷膜的研究进展,探讨了多孔陶瓷膜3D打印技术面临的挑战,并对3D打印技术在陶瓷膜领域的潜在发展方向进行了展望。  相似文献   

5.
随着现代化科学信息技术的不断发展,3D打印增材制造技术已经广泛的应用在社会的各个领域。本文将围绕金属3D打印增材制造技术的优势进行阐述,并详细的分析不同金属3D打印增材制造技术之间的对比,并逐步优化3D打印增材制造技术的力学性能,旨在提升不同金属3D打印增材制造技术水平。  相似文献   

6.
3D打印是一种快速成型技术,该技术在催化和吸附材料制备领域的应用目前已受到广泛重视。3D打印技术一方面能够拓展整体式催化/吸附材料的涵盖范围,实现材料的宏观结构优化和活性组分控制,同时有利于强化催化和吸附过程中的传质/传热过程,而且操作灵活,可靠性强,因此适于工业生产和实验室研究。本文介绍了催化/吸附材料制备过程中常见的几种3D打印技术,同时从打印策略和打印材料方面入手,综述了目前3D打印技术在催化和吸附领域的各项应用,并由此指出,目前3D打印技术可以将聚合物、碳材料、金属及金属氧化物、分子筛等材料纳入到整体式催化体系中,通过对材料结构和分布的控制对其催化和吸附性能进行影响,因此3D打印在催化和吸附材料制备领域的应用有着广阔的前景。同时指出材料微观结构控制、打印耗材及流程的标准化,以及以计算为依托的催化/吸附材料的整体式结构和活性位点分布控制是今后的研究重点。  相似文献   

7.
混凝土3D打印技术是当前土建领域的研究热点之一.由于混凝土材料破坏具有明显的脆性,因此对3D打印混凝土材料与结构的增强增韧技术需要得到重视.按照打印与增强的时间顺序总结和分析现有3D打印混凝土材料与结构增强与增韧方法,对比各种增强技术的优势与不足,并针对混凝土3D打印技术研究和推广应用需要解决的技术难题进行了总结与展望...  相似文献   

8.
熔融沉积增材制造(FDM)的产品力学性能呈现明显的各向异性,传统基于各向同性假设的本构已不再适用于FDM的材料。首先通过拉伸试验获得3D打印的轴拉试件三轴应力应变关系,然后提出基于横观各向同性本构获得3D打印的聚乳酸(PLA)材料弹性常数。相比于各向同性本构而言,横观各向同性本构模型和物性参数更适合于3D打印的PLA材料力学性能表征。  相似文献   

9.
张大旺  王栋民 《硅酸盐通报》2015,34(6):1583-1588
3D打印是近年来发展起来的高新技术,已在机械制造等行业取得很大成功,在材料和建筑等领域也有所发展.本文在介绍通用3D打印技术进展的基础上,着重阐述了混凝土材料的传统施工工艺、国内外3D打印混凝土技术与其材料和施工工艺的发展现状,讨论了3D打印混凝土当前所面临的问题,并对3D打印混凝土提出了未来展望.  相似文献   

10.
混凝土3D打印是现代数字化制造的典型代表,因其智能化、个性化、绿色建造的工艺优势受到广泛关注。作为一种新型建造方式,3D打印为建筑业带来了颠覆性的影响,并对传统混凝土材料提出了全新的挑战。如何提升混凝土材料与3D打印技术的适应性,实现3D打印技术在建筑中的广泛应用是人们普遍关注的焦点。本文概述了混凝土3D打印技术的发展历程,系统论述了混凝土3D打印材料在流变性、可挤出性、可建造性以及力学性能方面的研究现状,同时,介绍了3D打印模板技术在装饰及异型构筑物上的典型应用,以期为混凝土3D打印的研究与未来工程发展提供一定的参考与借鉴。  相似文献   

11.
近年来,3 D打印混凝土技术凭借着免模板、高自动化与智能化的优势,吸引了越来越多的关注,在建筑工程等领域出现了诸多的成功应用案例.但是,3 D打印工艺对混凝土的流变性能提出了更高的要求,而当前的混凝土相关标准与规范无法指导3 D打印混凝土的设计.同时,受打印工艺的影响,3 D打印混凝土的硬化性能和配筋技术也与传统混凝土...  相似文献   

12.
Additive manufacturing is a key technology required to realize the production of a personalized bone substitute that exactly meets a patient’s need and fills a patient-specific bone defect. Additive manufacturing can optimize the inner architecture of the scaffold for osteoconduction, allowing fast and reliable defect bridging by promoting rapid growth of new bone tissue into the scaffold. The role of scaffold microporosity/nanoarchitecture in osteoconduction remains elusive. To elucidate this relationship, we produced lithography-based osteoconductive scaffolds from tricalcium phosphate (TCP) with identical macro- and microarchitecture, but varied their nanoarchitecture/microporosity by ranging maximum sintering temperatures from 1000 °C to 1200 °C. After characterization of the different scaffolds’ microporosity, compression strength, and nanoarchitecture, we performed in vivo studies that showed that ingrowth of bone as an indicator of osteoconduction significantly decreased with decreasing microporosity. Moreover, at the 1200 °C peak sinter temperature and lowest microporosity, osteoclastic degradation of the material was inhibited. Thus, even for wide-open porous TCP-based scaffolds, a high degree of microporosity appears to be essential for optimal osteoconduction and creeping substitution, which can prevent non-unions, the major complication during bone regeneration procedures.  相似文献   

13.
高性能陶瓷是现代技术发展和应用不可或缺的关键材料。常规的陶瓷制造技术难以满足对个性化、精细化、轻量化和复杂化的高端产品快速制造的需求。新兴的增材制造技术(3D打印)在高性能陶瓷的成型制造领域具有巨大的发展潜力,有望突破传统陶瓷加工和生产的技术瓶颈,为陶瓷关键零部件的应用开辟新的途径。本文针对陶瓷材料及其快速成型和后处理工艺,重点阐述了三维打印技术、光固化成型技术、选择性激光烧结技术等主流陶瓷增材制造技术的研究现状,并指出了目前存在的问题及发展趋势。  相似文献   

14.
混凝土3D打印作为近年来发展出的高新技术,受到了广泛的关注,并取得了许多研究成果,但目前对材料特性的测试方法没有形成统一的认识.本文从流动性、凝结时间、流变特性、可挤出性和可建造性五个方面综述了3D打印混凝土的研究进展.流动度试验可以用来快速筛选出不适合打印的材料.从长远来看,凝结时间短的材料更有潜力.流变特性可以定量...  相似文献   

15.
An efficient method to improve the mechanical performance of a commercially available photocure resin is described wherein the resin is modified with a mixture of a cycloaliphatic epoxy and an anhydride curing agent. Photocured samples are thermally treated in a subsequent step to cure the epoxy to obtain an interpenetrated polymer network (IPN) and also complete reaction of the acrylate monomers remaining from the photocure. The latter is accomplished by a thermal radical initiator added earlier into the formulation together with the epoxy-anhydride. The thermal properties and microstructure of the resulting IPN are analyzed. Uniform and quantitative conversions are obtained, with glass transition temperatures comparable to conventional epoxies. The liquid, uncured samples containing different amounts of epoxy are stable at 30 °C for several weeks. In the fully cured epoxy-rich materials, nano-scale phase separation is observed by atomic force microscopy. This is corroborated by the existence of multiple relaxations determined by dynamic mechanical analysis analysis. Specimens from a formulation containing 50% by weight of epoxy-anhydride are 3D printed in a customized masked image processing stereolithography, thermally treated, and are subjected to compression tests. Results show that Young's modulus increases by 900% over the neat resin.  相似文献   

16.
Additive manufacturing (AM) is still underutilized as an industrial process, but is quickly gaining momentum with the development of innovative techniques and materials for various applications. In particular, stereolithography (SLA) is now shifting from rapid prototyping to rapid manufacturing, but is facing challenges in parts performance and printing speed, among others. This review discusses the application of SLA for polymer nanocomposites fabrication to show the technology's potential in increasing the applicability of current SLA‐printed parts. Photopolymerization chemistry, nanocomposite preparation, and applications in various industries are also explained to provide a comprehensive picture of the current and future capabilities of the technique and materials involved.

  相似文献   


17.
Microfluidic technique has emerged as a promising tool for the production of stable and monodispersed nanoparticles (NPs). In particular, this work focuses on liposome production by microfluidics and on factors involved in determining liposome characteristics. Traditional fabrication techniques for microfluidic devices suffer from several disadvantages, such as multistep processing and expensive facilities. Three-dimensional printing (3DP) has been revolutionary for microfluidic device production, boasting facile and low-cost fabrication. In this study, microfluidic devices with innovative micromixing patterns were developed using fused deposition modelling (FDM) and liquid crystal display (LCD) printers. To date, this work is the first to study liposome production using LCD-printed microfluidic devices. The current study deals with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes with cholesterol (2:1) prepared using commercial and 3D-printed microfluidic devices. We evaluated the effect of microfluidic parameters, chip manufacturing, material, and channel design on liposomal formulation by analysing the size, PDI, and ζ-potential. Curcumin exhibits potent anticancer activity and it has been reported that curcumin-loaded liposomes formulated by microfluidics show enhanced encapsulation efficiency when compared with other reported systems. In this work, curcumal liposomes were produced using the developed microfluidic devices and particle sizing, ζ-potential, encapsulation efficiency, and in vitro release studies were performed at 37 °C.  相似文献   

18.
This work reports a simple approach to prepare toughened 3D-printed polymethacrylate (PMA) composites using surfactant-modified chitosan (SMCS) particles at loadings between 2–10 wt%. Chitosan (CS) is modified with anionic surfactant, sodium dodecyl sulfate, via ionic complexation to facilitate compatibility and dispersion of CS to PMA matrix by non-covalent interactions between the components. The study successfully demonstrates high-accuracy 3D printing of composites with significant improvements in the overall mechanical properties. The composite with the best loading of 8 wt% SMCS shows a tensile modulus of 1.23 ± 0.05 GPa, a tensile strength at 49.8 ± 0.96 MPa, a yield stress at 33.3 ± 1.48 MPa, and a strain-at-failure 10.3 ± 0.61%, which are 45%, 40%, 32%, and 68% higher than neat PMA, respectively. This provides a significant improvement in toughness at 4.92 ± 0.55 MJ m−3 for the composite, 184% higher than that of neat PMA. The marked increase in toughness is due to enhanced filler-matrix interactions which improve the ability of the 3D printed composite to absorb energy under tensile load. The results from this work provide new understandings into the strategies for design and preparation of stereolithography 3D printed materials reinforced with toughening fillers from renewable resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号