首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectroscopy has recently been shown to be a potentially powerful whole-organism fingerprinting technique and is attracting interest within microbial systematics for the rapid identification of bacteria and fungi. However, while the Raman effect is so weak that only approximately 1 in 10(8) incident photons are Raman scattered (so that collection times are in the order of minutes), it can be greatly enhanced (by some 10(3)-10(6)-fold) if the molecules are attached to, or microscopically close to, a suitably roughened surface, a technique known as surface-enhanced Raman scattering (SERS). In this study, SERS, employing an aggregated silver colloid substrate, was used to analyze a collection of clinical bacterial isolates associated with urinary tract infections. While each spectrum took 10 s to collect, to acquire reproducible data, 50 spectra were collected making the spectral acquisition times per bacterium approximately 8 min. The multivariate statistical techniques of discriminant function analysis (DFA) and hierarchical cluster analysis (HCA) were applied in order to group these organisms based on their spectral fingerprints. The resultant ordination plots and dendrograms showed correct groupings for these organisms, including discrimination to strain level for a sample group of Escherichia coli, which was validated by projection of test spectra into DFA and HCA space. We believe this to be the first report showing bacterial discrimination using SERS.  相似文献   

2.
Psychro-active bacteria, important constituents of polar ecosystems, have a unique ability to remain active at temperatures below 0 degrees C, yet it is not known to what extent the composition of their outer cell surfaces aids in their low-temperature viability. In this study, aqueous suspensions of five strains of Arctic psychro-active marine bacteria (PAMB) (mostly sea-ice isolates), were characterized by surface-enhanced Raman spectroscopy (SERS) and compared with SERS spectra from E. coli and P. aerigunosa. We find the SERS spectra of the five psychro-active bacterial strains are similar within experimental reproducibility. However, these spectra are significantly different from the spectra of P. aeruginosa and E. coli. We find that the relative intensities of many of the common peaks show the largest differences reported so far for bacterial samples. An indication of a peak was found in the PAMB spectra that has been identified as characteristic of unsaturated fatty acids and suggests that the outer membranes of the PAMB may contain unsaturated fatty acids. We find that using suspensions of silver colloid particles greatly intensifies the Raman peaks and quenches the fluorescence from bacterial samples. This technique is useful for examination of specific biochemical differences among bacteria.  相似文献   

3.
The use of normal Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) of cationic-coated silver and gold substrates to detect polyatomic anions in aqueous environments is examined. For normal Raman spectroscopy, using near-infrared excitation, linear concentration responses were observed. Detection limits varied from 84 ppm for perchlorate to 2600 ppm for phosphate. In general, detection limits in the ppb to ppm concentration range for the polyatomic anions were achieved using cationic-coated SERS substrates. Adsorption of the polyatomic anions on the cationic-coated SERS substrates was described by a Frumkin isotherm. The SERS technique could not be used to detect dichromate, as this anion reacted with the coatings to form thiol esters. A competitive complexation method was used to evaluate the interaction of chloride ion with the cationic coatings. Hydrogen bonding and pi-pi interactions play significant roles in the selectivity of the cationic coatings.  相似文献   

4.
Over the past few decades, surface-enhanced Raman spectroscopy (SERS) has garnered respect as an analytical technique with significant chemical and biological applications. SERS is important for the life sciences because it can provide trace level detection, a high level of structural information, and enhanced chemical detection. However, creating and successfully implementing a sensitive, reproducible, and robust SERS active substrate continues to be a challenging task. Herein, we report a novel method for SERS that is based upon using multiplexed microfluidics (MMFs) in a polydimethylsiloxane platform to perform parallel, high throughput, and sensitive detection/identification of single or various analytes under easily manipulated conditions. A facile passive pumping method is used to deliver Ag colloids and analytes into the channels where SERS measurements are done under nondestructive flowing conditions. With this approach, SERS signal reproducibility is found to be better than 7%. Utilizing a very high numerical aperture microscope objective with a confocal-based Raman spectrometer, high sensitivity is achieved. Moreover, the long working distance of this objective coupled with an appreciable channel depth obviates normal alignment issues expected with translational multiplexing. Rapid evaluation of the effects of anion activators and the type of colloid employed on SERS performance are used to demonstrate the efficiency and applicability of the MMF approach. SERS spectra of various pesticides were also obtained. Calibration curves of crystal violet (non-resonant enhanced) and Mitoxantrone (resonant enhanced) were generated, and the major SERS bands of these analytes were observable down to concentrations in the low nM and sub-pM ranges, respectively. While conventional random morphology colloids were used in most of these studies, unique cubic nanoparticles of silver were synthesized with different sizes and studied using visible wavelength optical extinction spectrometry, scanning electron microscopy, and the MMF-SERS approach.  相似文献   

5.
This paper presents the first in vivo application of surface-enhanced Raman scattering (SERS). SERS was used to obtain quantitative in vivo glucose measurements from an animal model. Silver film over nanosphere surfaces were functionalized with a two-component self-assembled monolayer, and subcutaneously implanted in a Sprague-Dawley rat such that the glucose concentration of the interstitial fluid could be measured by spectroscopically addressing the sensor through an optical window. The sensor had relatively low error (RMSEC = 7.46 mg/dL (0.41 mM) and RMSEP = 53.42 mg/dL (2.97 mM).  相似文献   

6.
Gu B  Ruan C 《Analytical chemistry》2007,79(6):2341-2345
Technetium-99 (Tc) is an important radionuclide of concern, and there is a great need for its detection and speciation analysis in the environment. For the first time, we report that surface-enhanced Raman spectroscopy (SERS) is capable of detecting an inorganic radioactive anion, pertechnetate (TcO4-), at approximately 10(-7) M concentration levels. The technique also allows the detection of various species of Tc such as oxidized Tc(VII) and reduced and possibly complexed Tc(IV) species by use of gold nanoparticles as a SERS substrate. The primary Raman scattering band of Tc(VII) occurs at about 904 cm-1, whereas reduced Tc(IV) and its humic and ethylenediaminetetraacetic acid (EDTA) complexes show scattering bands at about 866 and 870 cm-1, respectively. Results also indicate that Tc(IV)-humic complexes are unstable and reoxidize to TcO4- upon exposure to oxygen. This study demonstrates that SERS could potentially offer a new tool and opportunity in studying Tc and its speciation and interactions in the environment at low concentrations.  相似文献   

7.
A method is presented for the use of SAM layers as internal standards for calibration in surface-enhanced Raman spectroscopy. Three cyano-containing compounds were attached to gold colloids via a metal-sulfur bond and evaluated for spectral stability and normalization capacity. The results show that the analyte, rhodamine 6G, and the internal standard signal enhancement covaried, and it was possible to quantify the analyte with PLS. The fact that the enhancing substrate was chaotic assemblies with large variation in signal enhancement shows the versatility of this method.  相似文献   

8.
The sensitive detection and characterization of carbohydrates by means of a strategy based on surface-enhanced Raman spectroscopy is demonstrated. Spectra are obtained after injecting a small amount of saccharide solution onto a roughened silver substrate, with subsequent deposition of silver colloid. The sensitivity achieved by this two-step approach enables high-quality Raman spectra to be obtained for small amounts of aqueous saccharides (5 microL of a 10(-2) M solution) utilizing minimal laser power and small signal acquisition times (a few seconds). Spectral "fingerprints" obtained for seven structurally similar monosaccharides demonstrate clearly an effective means by which each sugar can be identified. The application to more complex analyses is demonstrated for monosaccharide mixtures and a disaccharide, whereby the SERS fingerprints aid in the determination of components.  相似文献   

9.
Single-molecule detection with chemical specificity is a powerful and much desired tool for biology, chemistry, physics, and sensing technologies. Surface-enhanced spectroscopies enable single-molecule studies, yet reliable substrates of adequate sensitivity are in short supply. We present a simple, scaleable substrate for surface-enhanced Raman spectroscopy (SERS) incorporating nanometer-scale electromigrated gaps between extended electrodes. Molecules in the nanogap active regions exhibit hallmarks of very high Raman sensitivity, including blinking and spectral diffusion. Electrodynamic simulations show plasmonic focusing, giving electromagnetic enhancements approaching those needed for single-molecule SERS.  相似文献   

10.
The new interfacial ubiquity of surface-enhanced Raman spectroscopy   总被引:6,自引:0,他引:6  
  相似文献   

11.
Ruan C  Wang W  Gu B 《Analytical chemistry》2006,78(10):3379-3384
A new approach was developed to detect the activity of alkaline phosphatase (ALP) enzyme at ultralow concentrations using a surface-enhanced Raman scattering (SERS) technique. The approach is based on the use of gold nanoparticles as a SERS material whereas 5-bromo-4-chloro-3-indolyl phosphate (BCIP) is used as a substrate of ALP. The enzymatic hydrolysis of BCIP led to the formation of indigo dye derivatives, which were found to be highly SERS active. For the first time, we were able to detect ALP at a concentration of approximately 4 x 10(-15) M or at single-molecule levels when ALP was incubated with BCIP for 1 h in the Tris-HCl buffer. The same technique also was successfully employed to detect surface-immobilized avidin, and a detection limit of 10 ng/mL was achieved. This new technique allows the detection of both free and labeled ALP as a Raman probe in enzyme immunoassays, immunoblotting, and DNA hybridization assays at ultralow concentrations.  相似文献   

12.
Lactate production under anaerobic conditions is indicative of human performance levels, fatigue, and hydration. Elevated lactate levels result from several medical conditions including congestive heart failure, hypoxia, and diabetic ketoacidosis. Real-time detection of lactate can therefore be useful for monitoring these medical conditions, posttrauma situations, and in evaluating the physical condition of a person engaged in strenuous activity. This paper represents a proof-of-concept demonstration of a lactate sensor based on surface-enhanced Raman spectroscopy (SERS). Furthermore, it points the direction toward a multianalyte sensing platform. A mixed decanethiol/mercaptohexanol partition layer is used herein to demonstrate SERS lactate sensing. The reversibility of the sensor surface is characterized by exposing it alternately to aqueous lactate solutions and buffer without lactate. The partitioning and departitioning time constants were both found to be approximately 30 s. In addition, physiological lactate levels (i.e., 6-240 mg/dL) were quantified in phosphate-buffered saline medium using multivariate analysis with a root-mean-square error of prediction of 39.6 mg/dL. Finally, reversibility was tested for sequential glucose and lactate exposures. Complete partitioning and departitioning of both analytes was demonstrated.  相似文献   

13.
The current emphasis in efforts to produce systems capable of highly specific molecular recognition has produced a wide variety of compounds such as crown ethers, cryptands, cyclodextrins and other inclusion systems. A more desirable approach, and one obviating laborious organic synthesis, would be based upon a mechanism more like that seen in the in vivo antigen-antibody reaction. Sites having the capability for specific molecular recognition based on a predetermined template molecule would allow realization of systems of the desired specificity. The technique of cosorption of a silane and a surface-active molecule onto a glass surface has been comprehensively described by Sagiv and by Maoz and Sagiv and has indicated the feasibility of this approach, e.g. with surface-active dyes. In the present study, adsorbed monolayers were produced with sites based on chosen template molecules, using the Sagiv method, and the systems then reconstituted with the original template molecule as well with molecules of closely similar structure (i.e. porphyrins or chlorophylls). A high degree of recognition was evidenced, as shown by the use of surface-enhanced resonance Raman spectroscopy as the detection tool. It was also shown that chemically dissimilar species can be reconstituted into sites formed by other species, provided that the molecular shapes are compatible. The ease of resorption into performed sites is strongly dependent on the presence of amphiphilic character in the molecule re-entering a site.  相似文献   

14.
Peaks, dips, and intermediate line shapes have been observed in surface-enhanced coherent Raman spectroscopy. Here, we report an experimental observation of a peculiar line shape revealing both a peak and a dip as two vibrational transitions of pyridazine in the presence of aggregated gold nanoparticles. We propose a simple model based on plasmonic phase effects and quantum chemistry calculations, and compare the simulated coherent (SECARS) and incoherent (SERS) Raman signals from several complexes. Complex SECARS line shapes provide additional information compared to SERS and can be used as a tool in nanoscale sensing and spectroscopy.  相似文献   

15.
We report the use of silver nanoparticles to obtain surface-enhanced Raman spectra of Crystal Violet in an electrospray plume. Surface enhancement allowed detection at low concentrations with the high specificity afforded by vibrational spectroscopy. SERS spectra were used to obtain an axial concentration profile closely matching that obtained in previous fluorescence experiments. SERS can provide more analyte structural information than has been obtainable from fluorescence studies of the plume.  相似文献   

16.
We have applied Raman spectroscopy to discriminate between nontumor and tumor bladder tissue and to determine the biochemical differences therein. Tissue samples from 15 patients were collected, and frozen sections were made for Raman spectroscopy and histology. Twenty-five pseudocolor Raman maps were created in which each color represents a cluster of spectra measured on tissue areas of similar biochemical composition. For each cluster, the cluster-averaged spectrum (CAS) was calculated and classified as tumor and nontumor in accordance to pathohistology. Unguided hierarchical clustering was applied to display heterogeneity between and within groups of nontumor and tumor CAS. A linear discriminant analysis model was developed to discriminate between CAS from tumor and nontumor. The model was tested by a leave-one-patient-out validation, 84 of the 90 CAS (93%) were correctly classified with 94% sensitivity and 92% specificity. Biochemical differences between tumor and nontumor CAS areas were analyzed by fitting spectra of pure compounds to the CAS. Nontumor CAS showed higher collagen content while tumor CAS were characterized by higher lipid, nucleic acid, protein, and glycogen content. Raman spectroscopy enabled effective discrimination between tumor and nontumor bladder tissue based on characterized biochemical differences, despite heterogeneity expressed in both tumor and nontumor CAS.  相似文献   

17.
The last few years have witnessed rapid development of biological and medical applications of graphene oxide (GO), such as drug/gene delivery, biosensing, and bioimaging. However, little is known about the cellular uptake mechanism and pathway of GO. In this work, surface-enhanced Raman scattering (SERS) spectroscopy is employed to investigate the cellular internalization of GO loaded with Au nanoparticles (NPs) by Ca Ski cells. The presence of Au NPs on the surface of GO enables detection of enhanced intrinsic Raman signals of GO inside the cell. The SERS results reveal that GO is distributed inhomogeneously inside the cell. Furthermore, internalization of Au-GO into Ca Ski cells is mainly via clathrin-mediated endocytosis, and is an energy-dependent process.  相似文献   

18.
Liu F  Gu H  Yuan X  Dong X 《Applied spectroscopy》2010,64(11):1301-1307
The viability of the application of surface-enhanced Raman spectroscopy (SERS) to the semi-quantitative analysis of the triphenylmethane dye gentian violet was examined by using activated borohydride-reduced silver colloids. Raman and SERS spectra of aqueous solutions of gentian violet at different pH values were acquired for the first time and equally intense SERS signals were obtained at both acidic and alkaline pH values. Two maxima intensities observed in the pH profile revealed the presence of different ionization states of the dye. The pH conditions for SERS were optimized over the pH range 1 to 12 and the biggest enhancement for SERS of this charged dye was found to be at pH 2.0; thus, this condition was used for semi-quantitative analysis. A good linear correlation was observed for the dependence of the signal intensities of the SERS bands at 1620 cm(-1) (R = 0.999) and 1370 cm(-1) (R = 0.952) on dye concentration over the range 10(-6) to 10(-4) mol/L, using laser excitation at 514.5 nm. At concentrations of dye above 10(-2) mol/L, the concentration dependence of the SERS signals is nonlinear. This is explained as due to the precipitation of metallic silver as well as due to saturation caused by complete coverage of the SERS substrate. A series of intensities of the band at 1620 cm(-1) measured from dye molecules proved that the single-molecule limit of gentian violet is attained at the concentration of 10(-9) mol/L.  相似文献   

19.
Borate interference in surface-enhanced Raman spectroscopy of amines.   总被引:2,自引:0,他引:2  
Interference from borate is observed in surface-enhanced Raman (SER) spectra of lysine and propylamine obtained with borohydride-reduced silver colloids. Borate bands are also observed in the spectra of other basic analytes, as well as when certain variations are made in the silver colloid preparation. The relative intensities of the analyte and borate bands depend on the pH of the colloid, the extent of oxidation of the colloid surface, and the relative adsorptivities of the analyte and borate. Benzylamine adsorbs more readily than propylamine and also competes more effectively with borate for adsorption sites. On the other hand, borate virtually excludes lysine from the surface when the solution pH is greater than or equal to 8. The formation of silver oxide in basified colloids may facilitate borate adsorption. For some basic analytes, eliminating the adsorption of borate ion and the resulting spectral interference may require using alternative SERS substrates.  相似文献   

20.
Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 x 10(-6) M or 15 ng/microL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号