首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The fabrication and electrochemical response characteristics of two novel potentiometric sensors for the selective determination of domperidone (DOM) are described. The two fabricated sensors incorporate DOM–PTA (phosphotungstic acid) ion pair as the electroactive material. The sensors include a PVC membrane sensor and a carbon paste sensor. The sensors showed a linear, stable, and near Nernstian slope of 56.5 and 57.8 mV/decade for PVC membrane and carbon paste sensors, respectively over a relatively wide range of DOM concentration (1.0 × 10?1–1.0 × 10?5 and 1.0 × 10?1–3.55 × 10?6 M). The response time of DOM–PTA membrane sensor was less than 25 s and that in the case of carbon paste sensor was less than 20 s. A useful pH range of 4–6 was obtained for both types of sensors. A detection limit of 7.36 × 10?5 M was obtained for PVC membrane sensor and 1.0 × 10?6 M was obtained for carbon paste sensor. The proposed sensors showed very good selectivity to DOM in the presence of a large number of other interfering ions. The analytical application of the developed sensors in the determination of the drug in pharmaceutical formulations such as tablets was investigated. The results obtained are in good agreement with the values obtained by the standard method. The sensors were also applied for the determination of DOM in real samples such as urine by the standard addition method.  相似文献   

2.
Four new ion-selective electrodes (ISEs), based on N,N′-bis(salicylaldehyde)-p-phenylene diamine (SPD) as ionophore, are constructed for the determination of copper(II) ion. The modified carbon paste (MCPEs; electrodes I and II) and modified screen-printed sensors (MSPEs; electrodes III and IV) exhibit good potentiometric response for Cu(II) over a wide concentration range of 1.0 × 10?6 – 1.0 × 10?2 mol L?1 for electrodes (I and II) and 4.8 × 10?7–1.0 × 10?2 mol L?1 for electrodes (III and IV) with a detection limit of 1.0 × 10?6 mol L?1 for electrodes (I and II) and 4.8 × 10?7 mol L?1 for electrodes (III and IV), respectively. The slopes of the calibration graphs are 29.62 ± 0.9 and 30.12 ± 0.7 mV decade?1 for electrode (I) (tricresylphosphate (TCP) plasticizer) and electrode (II) (o-nitrophenyloctylether o-NPOE plasticizer), respectively. Also, the MSPEs showed good potentiometric slopes of 29.91 ± 0.5 and 30.70 ± 0.3 mV decade?1 for electrode (III) (TCP plasticizer) and electrode (IV) (o-NPOE plasticizer), respectively. The electrodes showed stable and reproducible potentials over a period of 60, 88, 120, and 145 days at the pH range from 3 to 7 for electrodes (II), (III), and (IV) and pH range from 3 to 6 for electrode (I). This method was successfully applied for potentiometric determination of Cu(II) in tap water, river, and formation water samples in addition to pharmaceutical preparation. The results obtained agree with those obtained with the atomic absorption spectrometry (AAS).  相似文献   

3.
A graphene quantum dots–gold nanoparticles–modified glassy carbon electrode was used to investigate the electrochemical behaviors of malachite green (MG). Cyclic voltammetry curves of MG at the modified electrode exhibited a pair of quasi-reversible adsorption-controlled redox peaks at 0.502 V (E pa) and 0.446 V (E pc) in a 0.05 mol L?1 H2SO4 solution. Under the optimal conditions, by using differential pulse voltammetry as the detection method, a linear relationship was obtained between the oxidation peak current and the MG concentration in the range of 4.0 × 10?7 to 1.0 × 10?5 mol L?1 with the detection limit as 1.0 × 10?7 mol L?1 (signal-to-noise ratio of 3). The modified electrode was applied in the determination of MG in fish samples, and the results were satisfactory with recoveries from 96.25 to 98.00 %. Furthermore, the modified electrode showed very good reproducibility and stability.  相似文献   

4.
In this article, simultaneous determination of dihydroxybenzene isomers [hydroquinone (HQ), catechol (CC), and resorcinol (RC)] was investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at thionine functionalized multiwalled carbon nanotube (TH-MWCNTs) modified glass carbon electrode. CV and DPV results showed that the TH-MWCNTs modified electrode exhibited excellent recognition ability toward the three isomers of dihydroxybenzene. Their oxidize peak currents were linear over ranges from 9.0 × 10?7 to 3.6 × 10?4 M for HQ, from 3.3 × 10?6 to 8.1 × 10?4 M for CC and from 4.3 × 10?6 to 9.0 × 10?4 M for RC, with the detection limits of 2.7 × 10?7, 1.0 × 10?6, and 1.1 × 10?6 M, respectively. The proposed method would potentially be applied to multi-component analysis in environmental control and chemical industry.  相似文献   

5.
A novel poly(crystal violet)/graphene-modified glassy carbon electrode (PCV/Gr/GCE) was fabricated for the simultaneous determination of Pb2+ and Cd2+. The electrochemical behavior of both species at the PCV/Gr/GCE was investigated employing cyclic voltammetry. In acetate buffer, the modified electrode showed an excellent electrocatalytical effect on the oxidation of both species and was further used for their determination. Under optimized analytical conditions, the oxidation peak currents of Pb2+ and Cd2+ obtained by differential pulse voltammetry in pH 4.6 acetate buffer showed a linear relationship with their concentrations in the ranges of 2.00 × 10?8–1.95 × 10?5 mol L?1 and 4.00 × 10?8–5.58 × 10?5 mol L?1, respectively. The developed method has excellent sensitivity, selectivity, reproducibility and has been successfully applied to the determination of Pb2+ and Cd2+ in water samples.  相似文献   

6.
This article describes a versatile application of 25,27-bis-N-(N,N-diethyl-2-aminoethyl)carbonylmethoxy-26,28-dihydroxycalix[4]arene (4) as an ionophore for the preparation of perchlorate ion-selective electrode. The electrode exhibits a Nernstian response over the perchlorate concentration range of 1.0×10?9 – 1.0×10?1 M with a slope of 59.24 ± 0.5 mV per decade of the concentration. The limit of detection as determined from the intersection of the extrapolated linear segments of the calibration plot is 3.04×10?9 M. The electrode shows good selectivity toward perchlorate with respect to many common anions. The response time of the sensor was 5–10 s and it has maximum life time of 2 months in the acidic pH. The electrode was used to determine perchlorate in real water samples. The interaction of the ionophore with perchlorate ions is also demonstrated by UV–vis spectroscopy.  相似文献   

7.
A new biosensor for the voltammetric detection of hydrogen peroxide was developed based on immobilization of catalase on a clinoptilolite modified carbon paste electrode using bovine serum albumin and glutaraldehyde. The biosensor response was evaluated according to electrode composition, reaction time, solution pH and temperature. The voltammetric signals were linearly in proportion to H2O2 concentration in the range 5.0 × 10−6–1.0 × 10−3 M with a correlation coefficient of 0.9975. The detection limit is 8.0 × 10−7 M and the relative standard deviation for 4.0 × 10−4 M hydrogen peroxide was 1.83% (= 6). The biosensor exhibited high sensitivity, and it was determined that it could be used for more than 2 months. In addition, the biosensor was successfully applied for the determination of hydrogen peroxide in milk samples.  相似文献   

8.
Multi-walled carbon nanotubes (MWCNTs) were grown by chemical vapor deposition. The effect of the composition of carbon paste electrode on its voltammograms was evaluated in basic solution with 5.0×10−5 M tryptophan (Trp). It was found that addition of MWCNTs to the carbon paste would generate the peak current of Trp because of its catalytic effect on the redox process. The pH strongly affects the peak potential of Trp. The best analytical response was obtained at pH 13.0. The anodic peak currents were proportional to Trp concentrations in the range of 1.0×10−9−1.0×10−4 M under the optimized experimental conditions. The detection limit was 2.2×10−10 M. The effect of potential scan rate on the peak potential and peak current of tryptophan was investigated. The correlation of the peak currents against v1/2 (v is the scan rate) is linear, which is very similar to a diffusion-controlled process. The proposed biosensor was applied to the determination of Trp in pharmaceuticals formulations successfully.  相似文献   

9.
The electrochemical behavior of clenbuterol hydrochloride (CLB) was studied at a multiwalled carbon nanotube-4-tert-butyl calix[6]arene composite chemically modified electrode by means of cyclic voltammetry, electron impedance spectroscopy, and differential pulse adsorptive stripping voltammetry. Surface characterization of the electrode was carried out by means of SEM. The results revealed that 4-tert-butyl calix[6]arene along with multiwalled carbon nanotubes demonstrated a high sensitivity for determination of CLB. Employing differential pulse adsorptive stripping voltammetry allowed a linear response over the concentration range of 1.99?×?10?8–4.76?×?10?5?M with a detection limit of 1.38?×?10?9?M for CLB. The described method has been applied for the estimation of CLB in biological fluids such as urine and serum.  相似文献   

10.
A new metformin (Mf) ion selective PVC membrane electrode based on the ion-associate of Mf with phosphotungstic acid was prepared. The electrode exhibited a mean calibration graph slope of 58 mV Mf concentration decade?1, at 25°C, within the concentration range 2·0 × 10?5?1·0 × 10?2 M MfCl. The change of pH within the range 4·0–11·0 did not affect the electrode performance. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode (0.000352 V°C?1). The electrode showed a very good selectivity for Mf with respect to a large number of inorganic and organic cations. The standard addition method and potentiometric titration were applied to determine Mf in pure solutions and in metformin-containing tablets.  相似文献   

11.
A novel modified electrode was fabricated with 9‐aminoacridine by electropolymerization in the phosphate buffer solution (PBS) (pH 7.4) and was characterized by cyclic voltammetry (CV). The modified electrode showed excellent electrocatalytic effect and high stability toward the electrochemical oxidation of dopamine (DA) and ascorbic acid (AA). Also, it showed a high stability for the determination of DA and AA simultaneously. Well‐separated voltammetric peaks were observed for DA and AA on the modified electrode. The separation of two anodic peaks was 170 mV, which was large enough to eliminate the interference of AA and determine DA. The differential pulse voltammograms (DPV) were used for the measurement of DA by means of the poly(9‐aminoacridine)‐modified electrode in PBS at pH 7.4. A linear response toDA was observed in the concentration range from 1.5 × 10?6 to 3.5 × 10?3 mol L?1 with a correlation coefficient of 0.9998 and a detection limit (S/N = 3) of 1.0 × 10?7mol L?1. The proposed method was used to determine DA in DA‐hydrochloride injection and showed excellent sensitivity and recovery. The ease of fabrication, good reproducibility, high stability, and low cost of the modified electrode are the promising features of the proposed sensor. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3864–3870, 2007  相似文献   

12.
In the present study newly developed potentiometric sensors for determination of zinc(II) are presented. The proposed potentiometric method was based on the fabrication of modified carbon paste (MCPE; electrode X) and modified gold nanoparticles-carbon paste (GNPs-CPE; electrode IX) sensors. A mercapto compound of 1,4-bis(5-mercaptopentyloxy)-benzene (BMPB) alone or self-assembled on gold nanoparticles was used as modifier to construct electrode (X) and electrode (IX) sensors, respectively. The prepared electrodes exhibit Nernstian slope of 29.93 ± 0.4 and 26.0 ± 1.02 mV decade−1 towards Zn(II) ion over a wide concentration range of 6.8 × 10−10 to 2.9 × 10−2 and 1.0 × 10−7 to 1.0 × 10−2 mol L−1 for electrode (IX) and electrode (X) sensors, respectively. The limit of detection of the electrode (IX) and electrode (X) sensors was found to be 6.8 × 10−10 and 1.0 × 10−7 mol L−1, respectively. The potentiometric response of the electrode (IX) and electrode (X) based on GNPs-BMPB and BMPB are independent of pH of test solution in the pH range of 2.5–8.1 and 3–7 with a response time of 6 and 8 s for electrode (IX) and electrode (X) sensors, respectively. The proposed sensors showed fairly good discriminating ability towards Zn(II) ion in comparison with many hard and soft metal ions. Finally, the proposed electrodes were successfully used as indicator electrodes in potentiometric titration of zinc ion with sodium tetraphenylborate (NaTPB) and in direct determination of Zn(II) ion in some water samples. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

13.
An electrochemical molecularly imprinted polymer (MIP) sensor for detecting the existence of epigallocatechin‐3‐gallate (EGCG) in tea and its products was successfully developed on the basis of a glassy carbon electrode modified with an electropolymerized nonconducting poly(o‐phenylenediamine) film. The properties of the electrode were characterized by cyclic voltammetry, differential pulse voltammetry, and infrared spectroscopy. The template molecules could be rapidly and thoroughly removed by methanol/acetic acid. The linear response range for EGCG was 5.0 × 10?7–1.0 × 10?4 mol/L, and the limit of detection was as low as 1.6 × 10?7 mol/L. The prepared MIP sensor could discriminate between EGCG and its analogs. In addition, satisfactory results were obtained in the detection of real tea samples. The results of our investigation indicate that the MIP sensor was useful for the determination of EGCG with excellent selectivity, high sensitivity, repeatability, and reproducibility. This MIP sensor provides the potential for monitoring the variation of EGCG content during the industrial processes and for predicting the quality of tea and its products. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
ABSTRACT

In this study, Zn(II) ion-imprinted polymer was prepared on the surface of vinyl silica particles and applied for detection of Zn(II) ions using differential pulse voltametry. The ion- imprinted polymer particles were prepared by free radical polymerization. The prepared particles were characterized by different morphological and elemental techniques. The ion-imprinted particles were used to fabricate the carbon paste electrode as a zinc ions sensor. The modified zinc sensor showed linear response in the concentration range 6.12 × 10?9 to 4.59 × 10?8 mol L?1. The limit of detection and limit of quantification of the electrode were 1.351 × 10?8 and 4.094 × 10?8 mol L?1, respectively.  相似文献   

15.
A glassy carbon electrode (GCE) modified with poly(sulfosalicylic acid) (PSA) and poly(diallyldimethylammonium chloride)-graphene (PDDA-GN) was prepared by a simple self-assembly method. The formation of films was ascribed to the electrostatic force between negatively charged PSA and positively charged PDDA-GN as well as the π–π stacking interaction between PSA and PDDA-GN. The as prepared films were characterized by scanning electron microscopy (SEM), Raman spectroscopy and electrochemical methods. Under the optimized condition, the modified GCE showed two well-defined redox waves for catechol (CT) and hydroquinone (HQ) in cyclic voltammetry (CV) with a peak potential separation of 111 mV, which ensured the anti-interference ability of the electrochemical sensor and made simultaneous determination of dihydroxybenzene isomers possible in real samples. The corresponding oxidation currents increased remarkably compared with those obtained at the bare GCE, PSA/GCE and PDDA-GN/GCE, respectively. Differential pulse voltammetry (DPV) was used for the simultaneous determination of CT and HQ. The anodic peak current of CT was linear in the concentration from 1 × 10?6 to 4 × 10?4 M in the presence of 3 × 10?5 M HQ, and the detection limit was 2.2 × 10?7 M (S/N = 3). At the same time, the anodic peak current of HQ was linear in the concentration from 2 × 10?6 to 4 × 10?4 M in the presence of 2 × 10?5 M CT, and the detection limit was 3.9 × 10?7 M (S/N = 3). The proposed method was applied to simultaneous determination of CT and HQ in tap water with satisfactory results. These results indicated that PSA/PDDA-GN is a promising modified material with great potential in electrocatalysis and electrochemical sensing.  相似文献   

16.
The electrochemical behaviour of Disperse Red 13 dye at a glassy carbon electrode was investigated in both organic and aqueous organic mixtures. Best results were obtained in N,N‐dimethylformamide/Britton–Robinson buffer (1:1, v/v), which displays a well‐defined peak at ‐0.40 V (vs Ag/AgCl) owing to reduction of the protonated nitro group. This method can be successfully applied to the electroanalytical determination of Disperse Red 13 in a very simple and inexpensive way. All the differential pulse voltammetry parameters were optimised by using a glassy carbon electrode modified with poly(glutamic acid) films. The targeted analytical method presented a linear response from Disperse Red 13 concentrations between 2.5 × 10?7 and 3 × 10?6 mol l?1 (= 0.997), with a detection limit of 1.5 × 10?8 mol l?1 and recoveries of 89.7–95.10% in water samples. Disperse Red 13 was successfully determined in textile industry wastewater by means of the proposed method after pre‐extraction in a solid‐phase extraction cartridge.  相似文献   

17.
Poly(3‐methylthiophene) (P3MT) film was synthesized by potentiodynamic method on Pt electrode in methylene chloride solution containing 0.10M tetrabuthlammonium perchlorate supporting electrolyte and used for the determination of hydroquinone (HQ) with amperometric I–t method in solution consisting of NaHSO4/Na2SO4 (SBS; pH 2.0). This modified electrode has a lower working potential and good operational stability due to reducing electrode fouling when compared with the direct oxidation of HQ at the bare Pt electrode. Limit of detection, limit of quantification, and the linear response range were found to be 1.32 × 10?5 mM, 4.41 × 10?5 mM, and between 4.41 × 10?5 – 50.0 mM (R2 = 0.997), at 0.50 V versus saturated calomel electrode, respectively. HQ determination in complex matrix was checked using real samples to demonstrate the applicability of modified electrode. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40859.  相似文献   

18.
In this work, an electrochemical β-nicotinamide adenine dinucleotide (NADH) sensor based on a carbon paste electrode modified with nickel oxide nanoparticles (NiONPs) was developed. The key highlights of this work are ease of preparation of the NiONPs-modified carbon paste electrode (NiONPs/MCPE), and its high sensitivity to NADH. The electrochemical characterization of NiONPs/MCPEs was performed via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical oxidation response of NADH was investigated by differential pulse voltammetry and chronoamperometry. The results indicated that the electrocatalytic effects of NiONPs on the response current of NADH significantly facilitated the electron transfer and improved the performance of the biosensor. Compared to bare carbon paste electrode (BCPE), the oxidation potential was shifted toward more negative potentials and the oxidation current was increased remarkably. Under optimum conditions, NADH could be detected in the range from 1.0 × 10?4 to 1.0 mmol L?1 with lower detection limit (0.05 μmol L?1). The proposed NADH sensor demonstrated fast and reproducible response. Furthermore, an ethanol biosensor was prepared using NiONPs and NAD+-dependent alcohol dehydrogenase enzyme giving linear responses over the concentration range of 1.6 and 38 mmol L?1 of ethanol.  相似文献   

19.
This paper introduces the development of an original PVC membrane electrode, based on 4-chloro-1,2-bis(2-pyridinecarboxamido)benzene (CBPB) as a suitable carrier for the Ho3+ ion. The electrode presents a Nernstian slope of 19.7 ± 0.3 mV per decade for the Ho3+ ions across a broad working concentration range from 1.0 × 10−6 to 1.0 × 10−2 M. The lower detection limit was 8.5 × 10−7 M in the pH range 2.7–9.8, while the response time was rapid (<15 s). Therefore, this potentiometric sensor displayed good selectivity for a number of cations such as alkali, alkaline earth, transition and heavy metal ions. The practical applicability of the electrode was demonstrated by its use as an indicator electrode in the potentiometric titration of Ho3+ ions with EDTA and in the determination of F- in mouth wash samples.  相似文献   

20.
A technique of selective and sensitive surfactant‐assisted dispersive liquid–liquid microextraction combined with spectrophotometry was developed for determination of iron in water and food samples. This method involves the formation of a red‐colored iron‐thiocyanate complex in the presence of cetyltrimethylammonium bromide (CTAB) as cationic surfactant. The use of CTAB assisted in color formation and effective extraction of the complex into the organic solvent through micelle formation prior to spectrophotometric and flame atomic absorption spectrometry measurement. Optimum absorbance and extraction of the iron complex was obtained with concentrations of ammonium thiocyanate, N‐phenylbenzimidoyl thiourea, CTAB and sodium chloride of 0.30 M, 3.0 × 10?3 M, 0.40 × 10?3 M and 1.0 %, respectively. The calibration curve was linear over a range of 20–350 ng mL?1 iron with correlation of estimation (R2) of 0.997. The proposed method was successfully applied to the determination of iron in food (cereal, fruit and vegetable) and water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号