首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feasibility of anaerobic ammonium oxidation (anammox) process to treat wastewaters containing antibiotics and heavy metals (such as the liquid fraction of the anaerobically digested swine manure) was studied in this work. The specific anammox activity (SAA) was evaluated by means of manometric batch tests. The effects of oxytetracycline, sulfathiazole, copper and zinc were studied. The experimental data of the short-term assays were fitted with an inhibition model to identify the half maximal inhibitory concentration (IC(50)). After 24 h exposures, IC(50)-values equal to 1.9, 3.9, 650 and 1,100 mg L(-1) were identified for copper, zinc, sulfathiazole and tetracycline respectively. The effect of prolonged exposure (14 days) to oxytetracycline and sulfathiazole was studied by means of repeated batch-assays. Anabolism and catabolism reactions were active during the inhibition tests indicating that anammox bacteria could grow even in the extreme conditions tested. Considering the average concentrations expected in swine wastewaters, the inhibitors studied do not seem to represent a problem for the application of the anammox process. However, in order to verify the effect of these compounds on the growth of anammox bacteria, continuous culture experiments could be conducted.  相似文献   

2.
Nitrogen removal from digested manure in a simple one-stage process   总被引:1,自引:0,他引:1  
A process based on partial nitrification and recirculation into the anaerobic digester was studied to remove nitrogen from digested manure and thus reduce enhanced gaseous ammonia emissions due to on-farm biogas production. An anaerobic reactor representing an anaerobic manure digester was fed with a nitrite solution and digested manure liquor. Nitrite was efficiently removed from the influent and ammonium formation was observed first. Ammonium was subsequently eliminated up to a maximum of 90% of the influent concentration, indicating anaerobic ammonium oxidation activity. This activity, however, decreased again and was lost at the end of the 4-month operation period. In a 1.5 L aerobic CSTR that was fed with digested manure liquor, ammonium was efficiently removed from the influent. Nitrite and nitrate formation was observed but mass balances indicated significant N-removal. Accumulation of suspended solids was observed at the end of the experiment suggesting presence of oxygen-free environments. In a second test in a 15 L CSTR where suspended solids sedimentation could be avoided, low N-removal rates were observed in the absence of biofilm carrier elements whereas high N-removal rates were achieved in their presence. A simple one-stage process based on immobilized biomass could therefore be installed downstream of agricultural anaerobic digesters in order to mitigate undesirable gaseous ammonia emissions.  相似文献   

3.
Single-stage Nitrogen removal using Anammox and Partial nitritation (SNAP) process was newly developed as an economical nitrogen removal process for ammonium rich wastewaters. The experimental studies for the evaluation of SNAP process were carried out using a novel biofilm reactor, in which hydrophilic net-type acryl fiber biomass carrier was applied. This SNAP reactor was operated under operational conditions of pH 7.5-7.7, 35 degrees C and DO 2-3 mg/L, and 60 to 80% of influent NH4-N was removed under loading rate of 0.48 kg-N/m3/d. Through the DNA analysis of the attached sludge, it was made clear that ammonium oxidizing bacteria (AOB) and anammox bacteria coexisted in the attach-immobilized sludge on the acryl fiber biomass carrier. Favorable conditions for the growth of anammox bacteria were created inside attach-immobilized nitrifying sludge. Two kinds of anammox bacteria and two kinds of AOB were detected in the SNAP sludge. Existence ratios of anammox and AOB were estimated to be 15% and 8.7%, respectively, based on the obtained clone numbers. This coexisting condition was confirmed by the FISH image of SNAP sludge and its confocal laser scanning microscope.  相似文献   

4.
Aerobic biological treatment of digested sludge was studied in a continuously operated laboratory set-up. An aerated reactor was filled with thermophilically digested sludge from the Moscow wastewater treatment plant and inoculated with special activated sludge. It was then operated at the chemostat mode at different flow rates. Processes of nitrification and denitrification, as well as dephosphatation, occurred simultaneously during biological aerobic treatment of thermophilically digested sludge. Under optimal conditions, organic matter degradation was 9.6%, the concentrations of ammonium nitrogen and phosphate decreased by 89 and 83%, respectively, while COD decreased by 12%. Dewaterability of digested sludge improved significantly. The processes were found to depend on hydraulic retention time, oxygen regime, and temperature. The optimal conditions were as follows: hydraulic retention time 3-4 days, temperature 30-35 degrees C, dissolved oxygen levels 0.2-0.5 mg/L at continuous aeration or 0.7-1 mg/L at intermittent aeration. Based on these findings, we propose a new combined technology of wastewater sludge treatment. The technology combines two stages: anaerobic digestion followed by aerobic biological treatment of digested sludge. The proposed technology makes it possible to degrade the sludge with conversion of approximately 45% volatile suspended solids to biogas, to improve nitrogen and phosphorus removal in reject water from sludge treatment units, and to achieve removal of malodorous substances after 8-9 days of anaerobic-aerobic sludge treatment.  相似文献   

5.
The potential of a new concept to enable economically feasible operation of manure-based biogas plants was investigated at laboratory scale. Wet explosion (WEx) was applied to the residual manure fibers separated after the anaerobic digestion process for enhancing the biogas yield before reintroducing the fiber fraction into the biogas reactor. The increase in methane yield of the digested manure fibers was investigated by applying the WEx treatment under five different process conditions. The WEx treatment at 180 °C and a treatment time of 10 min without addition of oxygen was found to be optimal, resulting in 136% increase in methane yield compared with the untreated digested manure fibers in batch experiments. In a continuous mesophilic reactor process the addition of WEx-treated digested fibers in co-digestion with filtered manure did not show any signs of process inhibition, and the overall methane yield was on average 75% higher than in a control reactor with addition of non-treated digested fibers.  相似文献   

6.
This study investigated the discrepancies between the BOD removal rates measured during short term assays and those measured during continuous activated sludge treatment of bleached kraft mill effluent (BKME). A combination of batch tests and fed batch tests with oxygen uptake rate (OUR), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and mixed liquor volatile suspended solids (MLVSS) measurements were used to characterize the degradation rates for the activated sludge treatment of BKME and to divide the soluble readily biodegradable substrate into two to five separate fractions based on biodegradation rates. The removal rates varied by over an order of magnitude between the most readily degradable substrates (1 x 10(-3) mg COD/mg MLVSS minute), and the more slowly degradable substrates (2 x 10(-5) mg COD/mg MLVSS minute). If the readily biodegradable fraction of BKME was modeled as one substrate, initial rate kinetic measurements from batch tests were heavily influenced by the fractions with the greatest degradation rates, while any remaining BOD in the treated effluent was predominantly from the slowly degradable fraction, giving inconsistent results. Taking the multi-component nature of the wastewater into account, batch test results can be used to predict fed-batch and continuous activated sludge reactor performance.  相似文献   

7.
Traditional nitrification/denitrification is not suitable for nitrogen removal when wastewater contains high concentrations of ammonium nitrogen and low concentrations of biodegradable carbon. Recently, a deammonification process was developed and proposed as a new technology for treatment of such streams. This process relies on a stable interaction between aerobic bacteria Nitrosomonas, that accomplish partial nitritation and anaerobic bacteria Planctomycetales, which conduct the Anammox reaction. Simultaneous performance of these two processes can lead to a complete autotrophic nitrogen removal in one single reactor. The experiments where nitrogen was removed in one reactor were performed at a technical-scale moving-bed pilot plant, filled with Kaldnes rings and supplied with supernatant after dewatering of digested sludge. It was found that a nitrogen removal rate obtained at the pilot plant was 1.9 g m(-2) d(-1). Parallel to the pilot plant run, a series of batch tests were carried out under anoxic and aerobic conditions. Within the batch tests, where the pilot plant's conditions were simulated, removal rates reached up to 3 g N m(-2)d(-1). Moreover, the batch tests with inhibition of Nitrosomonas showed that only the Anammox bacteria (not anoxic removal by Nitrosomonas) are responsible for nitrogen removal.  相似文献   

8.
Granular biomass capable of partial nitritation and anammox   总被引:1,自引:0,他引:1  
A novel and efficient way of removing nitrogen from wastewater poor in biodegradable organic carbon, is the combination of partial nitritation and anoxic ammonium oxidation (anammox), as in the one-stage oxygen-limited autotrophic nitrification/denitrification (OLAND) process. Since anoxic ammonium-oxidizing bacteria grow very slowly, maximum biomass retention in the reactor is required. In this study, a lab-scale sequencing batch reactor (SBR) was used to develop granular, rapidly settling biomass. With SBR cycles of one hour and a minimum biomass settling velocity of 0.7 m/h, OLAND granules were formed in 1.5 months and the nitrogen removal rate increased from 50 to 450 mg N L(-1) d(-1) in 2 months. The granules had a mean diameter of 1.8 mm and their aerobic and anoxic ammonium-oxidizing activities were well equilibrated to perform the OLAND reaction. Fluorescent in-situ hybridization (FISH) demonstrated the presence of both beta-proteobacterial aerobic ammonium oxidizers and planctomycetes (among which anoxic ammonium oxidizers) in the granules. The presented results show the applicability of rapidly settling granular biomass for one-stage partial nitritation and anammox.  相似文献   

9.
Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway in the biological nitrogen cycle and a new cost-effective way to remove ammonium from wastewater. We have so far developed new immobilization technique that anammox bacteria entrapped in polyethylene glycol (PEG) gel carrier. However, fate and behavior of anammox bacteria in a gel carrier is not well understood. In the present study, we focused on the population changes of anammox bacteria in a gel carrier. Three specific primer sets were designed for real-time PCR. For quantification of anammox bacteria in a gel carrier, real-time PCR was performed. The anammox bacteria related to HPT-WU-N03 clone were increased the rate in anammox population, and found to be a major population of anammox bacteria in a gel carrier. Furthermore, from the results of nitrogen removal performance and quantification of anammox bacteria, the correlation coefficient between copy numbers of anammox bacteria and nitrogen conversion rate was calculated as 0.947 in total anammox population. This is the first report that population changes of anammox bacteria immobilized in a gel carrier were evaluated.  相似文献   

10.
The ability of bacterial cultures to create biofilm brings a possibility to enhance biological wastewater treatment efficiency. Moreover, the ability of Anammox and Nitrosomonas species to grow within the same biofilm layer enabled a one-stage system for nitrogen removal to be designed. Such a system, with Kaldnes rings as carriers for biofilm growth, was tested in a technical pilot plant scale (2.1 m(3)) at the Himmerfj?rden Waste Water Treatment Plant (WWTP) in the Stockholm region. The system was directly supplied with supernatant originating from dewatering of digested sludge containing high ammonium concentrations. Nearly 1-year of operational data showed that during the partial nitritation/Anammox process, alkalinity was utilised parallel to ammonium removal. The process resulted in a small pH drop, and its relationship with conductivity was found. The nitrogen removal rate for the whole period oscillated around 1.5g N m(-2)d(-1) with a maximum value equal to 1.9 g N m(-2)d(-1). Parallel to the pilot plant experiment, a series of batch tests were run to investigate the influence on removal rates of different dissolved oxygen conditions and addition of nitrite. The highest nitrogen removal rate (5.2g N m(-2)2d(-1)) in batch tests was obtained when the Anammox process was stimulated by the addition of nitrite. In the simultaneous partial nitritation and Anammox process, the partial nitritation was the rate-limiting step.  相似文献   

11.
Anaerobic Ammonium Oxidation (ANAMMOX) is a novel biological nitrogen removal process, which is regarded as the most economical process at present. In this paper, two lab-scale UASB reactors, one of which was inoculated with the mixture of anaerobic sludge and aerobic sludge, the other with river sediments, were started up, using the inorganic synthetic water containing ammonium and nitrite as influent. After 421 days' and 356 days operation respectively, the ammonium removal efficiencies in two reactors reached 94% and 86% respectively, the total nitrogen volumetric loading rates were 2.5 and 1.6 kgN/m3 x d. ANAMMOX granules were obtained in both reactors; the color of most granules was brown, but some of them were red. Based on the observation and studies on the microstructure of the granules, three kinds of ANAMMOX granular sludge formation mechanisms were proposed: adhering biofilm and disintegrated granular core mechanism, adhering biofilm and inorganic core mechanism and the self-coherence mechanism. For phylogenetic characterization of anaerobic ammonium oxidizers, 16S rDNA approach was performed using Planctomycetales-specific PCR amplification. The dominant anammox bacteria occupied more than 90% of Planctomycetales-specific bacteria, and 27% of all bacteria in reactors. The dominant anammox bacteria distantly related to all currently reported candidate anammox genera. Functional gene of amoA was analyzed to investigate the 'aerobic' ammonium-oxidizing bacteria in beta-Proteobacteria. The 'aerobic' ammonium-oxidizing bacteria were more diverse than anammox bacteria, but most of them clustered in anoxic ammonium-oxidizing Nitrosomonas eutropha/europaea groups. The composition of 'aerobic' ammonium-oxidizing bacteria is only 2% of all of bacteria in reactors.  相似文献   

12.
When domestic wastewater was treated with different onsite applications of buried sand filters and sequencing batch reactors, good organic matter removal was common and effluent BOD7 concentrations from 5 to 20 mg/l were easily achievable. For total nitrogen, effluent concentrations were usually between 20 and 80 mg/l. Good phosphorus removal, even using special adsorption or precipitation materials, was difficult to achieve and large variations occurred. The median effluent concentration of total phosphorus in the most successful sand filter application was less than 0.1 mg/l and other sand filters and SBRs had the median concentrations varying from 1.7 to 6.7 mg/l. These results are based on one year in situ monitoring of 2 conventional buried sand filters, 6 sand filter applications with special phosphorus adsorbing media within the filter bed, 5 sand filters with separate tertiary phosphorus filtration and 11 small SBRs of three different types. The study was carried out in southern Finland during 2003-05. The whole project included monitoring of more than 60 plants of 20 different treatment types or methods, used in normal conditions to treat domestic wastewater. Evaluation of the different systems was made by comparing the measured effluent concentrations. In addition the effluent concentrations were compared to the discharge limits calculated according to the new Finnish regulation.  相似文献   

13.
Performances of a granular sequencing batch reactor (GSBR).   总被引:2,自引:0,他引:2  
Aerobic granulation in sequencing batch reactors is widely reported in literature and in particular in SBAR (Sequencing batch airlift reactor) configuration, due to the high localised hydrodynamic shear forces that occur in this type of configuration. The aim of this work was to observe the phenomenon of the aerobic granulation and to confirm the excellent removal efficiencies that can be achieved with this technology. In order to do that, a laboratory-scale plant, inoculated with activated sludge collected from a conventional WWTP, was operated for 64 days: 42 days as a SBAR and 22 days as a SBBC (sequencing batch bubble column). The performances of the pilot plant showed excellent organics removal. COD and BOD removal efficiencies were respectively, 93 and 94%; on the contrary, N-removal efficiency was extremely low (5%-45%/o). The granules dimensions increased during the whole experimentation; change of reactor configuration contributed to further improve this aspect. The experimental work confirmed the essential role of hydraulic settling time in the formation of aerobic granules and in the sludge settleability and the need to find an optimum between granule size and oxygen supply to achieve good N-removal efficiency.  相似文献   

14.
A sustainable option for nitrogen removal is the anaerobic ammonium-oxidizing (anammox) process in which ammonium is oxidized to nitrogen gas with nitrite as electron acceptor. Application of this process, however, is limited by the availability of anammox biomass. In this study, two Brocadia-like anammox phylotypes were successfully enriched, detected and identified from an activated sludge taken from a domestic wastewater treatment plant (Minas Gerais, Brazil) employing a Sequencing Batch Reactor (SBR). The dominant phylotype was closely related to 'Candidatus Brocadia sinica', but one clone seemed to represent a novel species for which we propose the name 'Candidatus Brocadia brasiliensis'. Based on Fluorescence in situ hybridization (FISH) analysis, this enrichment led to a relative population size of 52.7% (±15.6) anammox bacteria after 6 months of cultivation. The cultivation process can be divided into three phases: phase 1 (approximately 25 days) was characterized by heterotrophic denitrification metabolism, phase 2 was the propagation phase and phase 3 (from the 87th day onwards), in which significant anammox activity was detected. A long-term performance of the SBR showed a near perfect removal of nitrite based on the influent NO(2)(-)-N concentration of 61-95 mg L(-1). The average ammonia removal efficiency was 90% with the influent NH(4)(+)-N concentration of 55-82 mg L(-1). Therefore, anammox cultivation and enrichment from activated sludge was possible under a controlled environment within 3 months.  相似文献   

15.
Northern Aboriginal communities in Canada suffer from poor wastewater treatment. Treatment systems on 75% of Manitoban Aboriginal communities produce substandard effluent despite the presence of sophisticated treatment systems. A 200-litre, pilot-scale membrane bioreactor (MBR) was established on the Opaskwayak Cree Nation to investigate the feasibility of MBRs in mitigating Aboriginal wastewater treatment issues. The pilot system was remote controlled and monitored via the Internet using the program pcAnywhere. The community utilized two existing sequencing batch reactors (SBR) and three sand filters for wastewater treatment. The community wastewater was relatively weak and highly fluctuating which led to poorly settling sludge that readily fouled the sand filters. A comparison study between the MBR and SBR was undertaken from September to December 2003. Operated at a 10-hour hydraulic retention time and 20-day solids residence time, the MBR outperformed the SBR and sand filtration on BOD and suspended solids removal. Furthermore, the MBR showed high levels of nitrification despite relatively cold water temperatures.  相似文献   

16.
Constructed wetlands (CWs) have been used to treat agricultural effluents with varying success especially with respect to their operational efficiency in winter and ability to retain phosphorus. Dirty water (DW) from dairy farms is a mixture of manure contaminated runoff and milk parlour washings with a highly polluting biochemical oxygen demand (BOD) < or =3000 mg/L. The initial performance a CW of a 1.2 ha horizontal flow CW consisting of five ponds in series designed to treat DW from a dairy unit was assessed over four years. Ponds were earth-lined and shallow (0.3 m) with a water residence time of 100 days and planted with five species of emergent macrophytes. In comparison to CW inflow, annual reductions were as follows: BOD 99%, P 95% and N 92.8%. Coliforms were reduced by a 10(-5) factor to natural levels. From May to October there was little CW discharge due to evaporative losses. Final effluent quality was poorest in February but remained within a regulatory effluent standard for BOD of 40 mg/L. If the CW had only four ponds (25% less surface area) effluent would have failed the BOD standard in three years.  相似文献   

17.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.  相似文献   

18.
UNESCO-IHE has been developing an arsenic removal family filter with a capacity of 100 L/day based on arsenic adsorption onto iron oxide coated sand, a by-product of iron removal plants. The longer term and field conditions performance of the third generation of eleven family filters prototypes were tested in rural Bangladesh for 30 months. All filters achieved initially highly effective arsenic removal irrespective of arsenic concentration and groundwater composition. Arsenic level in filtrate reached 10 mug/l after 50 days of operation at one testing site and after 18 months of continuous operation at other 3 testing sites. Arsenic level at other 7 sites remained below the WHO guideline value till the end of study. Positive correlation was found between arsenic removal capacity of the filter and iron concentration in groundwater. In addition to arsenic, iron present in groundwater at all testing sites was also removed highly effectively. Manganese removal with IHE family filter was effective only when treating groundwater with low ammonia. A simple polishing sand filter, after IHE family filter, resulted in consistent and effective removal of manganese. IHE family filters were easy to operate and were well accepted by the local population.  相似文献   

19.
Production of dinitrogen gas via microbially mediated anaerobic ammonium oxidation (anammox) and denitrification plays an important role in removal of fixed N from aquatic ecosystems. Here, we investigated anammox and denitrification potentials via the 15N isotope pairing technique in the helium flushed bottom water (~0.2 m above the sediment) of Sandusky Bay, Sandusky Subbasin, and Central Basin in Lake Erie in three consecutive summers (2010?2012). Potential rates of anammox (0–922 nM/day) and denitrification (1 to 355 nM/day) varied greatly among sampling sites during the 3 years we studied. The relative importance of anammox to total N2 production potentially ranged from 0 to 100% and varied temporally and spatially. Our study represents one of the first efforts to measure potential activities of both anammox and denitrification in the water column of Lake Erie and our results indicate the Central Basin of Lake Erie is a hot spot for N removal through anammox and denitrification activities. Further, our data indicate that the water column, specifically hypolimnion, and the surface sediment of the Lake Erie Central Basin are comparatively important for microbially mediated N removal.  相似文献   

20.
In this study, treatment of slaughterhouse wastewater by electrocoagulation was investigated in batch system using Fe electrodes. The effect of various variables such as electrode number, current density and operating time was tested. Pollutant removal efficiency increased with increasing electrode number and operating time. The biochemical oxygen demand (BOD(5))(,) chemical oxygen demand (COD), total suspended solid (TSS), and total nitrogen (TN) removal efficiencies using eight electrodes at a contact time of 50 min and a current density of 10 A/m(2) were 66, 62, 60, and 56%, respectively. Higher electrode numbers will allow shorter operating times to achieve certain removal efficiencies. Also, removal efficiencies increased by increasing the current density; the highest removal efficiencies of BOD(5,) COD, TSS, and TN at a contact time of 50 min and a current density of 25 A/m(2) were 97, 93, 81, and 84%, respectively. The results also show that the reactor pH varies directly with the current density; at 25 A/m(2), the reactor pH increased from an initial value of 7.1 to 7.7 after 50 min. The experimental results showed that the kinetics of BOD(5), COD, TSS and TN removal could be fitted adequately using a first order kinetic model (higher R(2)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号